Voir la notice de l'article provenant de la source Annals of Mathematics website
We prove the mixing conjecture of Michel and Venkatesh for toral packets with negative fundamental discriminants and split at two fixed primes, assuming all splitting fields have no exceptional Landau-Siegel zero. As a consequence we establish for arbitrary products of indefinite Shimura curves the equidistribution of Galois orbits of generic sequences of CM points all of whose components have the same fundamental discriminant, assuming the CM fields are split at two fixed primes and have no exceptional zero.
@article{10_4007_annals_2019_189_1_4, author = {Ilya Khayutin}, title = {Joint equidistribution of {CM} points}, journal = {Annals of mathematics}, pages = {145--276}, publisher = {mathdoc}, volume = {189}, number = {1}, year = {2019}, doi = {10.4007/annals.2019.189.1.4}, mrnumber = {3898709}, zbl = {07003147}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2019.189.1.4/} }
TY - JOUR AU - Ilya Khayutin TI - Joint equidistribution of CM points JO - Annals of mathematics PY - 2019 SP - 145 EP - 276 VL - 189 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4007/annals.2019.189.1.4/ DO - 10.4007/annals.2019.189.1.4 LA - en ID - 10_4007_annals_2019_189_1_4 ER -
Ilya Khayutin. Joint equidistribution of CM points. Annals of mathematics, Tome 189 (2019) no. 1, pp. 145-276. doi: 10.4007/annals.2019.189.1.4
Cité par Sources :