Voir la notice de l'article provenant de la source Annals of Mathematics website
We compute the $1$-line of stable homotopy groups of motivic spheres over fields of characteristic not two in terms of hermitian and Milnor $K$-groups. This is achieved by solving questions about convergence and differentials in the slice spectral sequence.
Oliver Röndigs 1 ; Markus Spitzweck 1 ; Paul Arne Ostvær 2
@article{10_4007_annals_2019_189_1_1, author = {Oliver R\"ondigs and Markus Spitzweck and Paul Arne Ostv{\ae}r}, title = {The first stable homotopy groups of motivic spheres}, journal = {Annals of mathematics}, pages = {1--74}, publisher = {mathdoc}, volume = {189}, number = {1}, year = {2019}, doi = {10.4007/annals.2019.189.1.1}, mrnumber = {3898173}, zbl = {07003144}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2019.189.1.1/} }
TY - JOUR AU - Oliver Röndigs AU - Markus Spitzweck AU - Paul Arne Ostvær TI - The first stable homotopy groups of motivic spheres JO - Annals of mathematics PY - 2019 SP - 1 EP - 74 VL - 189 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4007/annals.2019.189.1.1/ DO - 10.4007/annals.2019.189.1.1 LA - en ID - 10_4007_annals_2019_189_1_1 ER -
%0 Journal Article %A Oliver Röndigs %A Markus Spitzweck %A Paul Arne Ostvær %T The first stable homotopy groups of motivic spheres %J Annals of mathematics %D 2019 %P 1-74 %V 189 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4007/annals.2019.189.1.1/ %R 10.4007/annals.2019.189.1.1 %G en %F 10_4007_annals_2019_189_1_1
Oliver Röndigs; Markus Spitzweck; Paul Arne Ostvær. The first stable homotopy groups of motivic spheres. Annals of mathematics, Tome 189 (2019) no. 1, pp. 1-74. doi: 10.4007/annals.2019.189.1.1
Cité par Sources :