Voir la notice de l'article provenant de la source Annals of Mathematics website
We generalize the Shimura–Waldspurger correspondence, which describes the generic part of the automorphic discrete spectrum of the metaplectic group $\mathrm {Mp}_2$, to the metaplectic group $\mathrm {Mp}_{2n}$ of higher rank. To establish this, we transport Arthur’s endoscopic classification of representations of the odd special orthogonal group $\mathrm {SO}_{2r+1}$ with $r \gg 2n$ by using a result of J.-S. Li on global theta lifts in the stable range.
Wee Teck Gan 1 ; Atsushi Ichino 2
@article{10_4007_annals_2018_188_3_5, author = {Wee Teck Gan and Atsushi Ichino}, title = {The {Shimura{\textendash}Waldspurger} correspondence for $\mathrm {Mp}_{2n}$}, journal = {Annals of mathematics}, pages = {965--1016}, publisher = {mathdoc}, volume = {188}, number = {3}, year = {2018}, doi = {10.4007/annals.2018.188.3.5}, mrnumber = {3866889}, zbl = {06976276}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2018.188.3.5/} }
TY - JOUR AU - Wee Teck Gan AU - Atsushi Ichino TI - The Shimura–Waldspurger correspondence for $\mathrm {Mp}_{2n}$ JO - Annals of mathematics PY - 2018 SP - 965 EP - 1016 VL - 188 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4007/annals.2018.188.3.5/ DO - 10.4007/annals.2018.188.3.5 LA - en ID - 10_4007_annals_2018_188_3_5 ER -
%0 Journal Article %A Wee Teck Gan %A Atsushi Ichino %T The Shimura–Waldspurger correspondence for $\mathrm {Mp}_{2n}$ %J Annals of mathematics %D 2018 %P 965-1016 %V 188 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4007/annals.2018.188.3.5/ %R 10.4007/annals.2018.188.3.5 %G en %F 10_4007_annals_2018_188_3_5
Wee Teck Gan; Atsushi Ichino. The Shimura–Waldspurger correspondence for $\mathrm {Mp}_{2n}$. Annals of mathematics, Tome 188 (2018) no. 3, pp. 965-1016. doi: 10.4007/annals.2018.188.3.5
Cité par Sources :