A proof of Onsager’s conjecture
Annals of mathematics, Tome 188 (2018) no. 3, pp. 871-963

Voir la notice de l'article provenant de la source Annals of Mathematics website

For any $\alpha < 1/3$, we construct weak solutions to the $3D$ incompressible Euler equations in the class $C_tC_x^\alpha $ that have nonempty, compact support in time on ${\mathbb R} \times {\mathbb T}^3$ and therefore fail to conserve the total kinetic energy. This result, together with the proof of energy conservation for $\alpha > 1/3$ due to [Eyink] and [Constantin, E, Titi], solves Onsager’s conjecture that the exponent $\alpha = 1/3$ marks the threshold for conservation of energy for weak solutions in the class $L_t^\infty C_x^\alpha $. The previous best results were solutions in the class $C_tC_x^\alpha $ for $\alpha < 1/5$, due to [Isett], and in the class $L_t^1 C_x^\alpha $ for $\alpha < 1/3$ due to [Buckmaster, De Lellis, Székelyhidi], both based on the method of convex integration developed for the incompressible Euler equations by [De Lellis, Székelyhidi]. The present proof combines the method of convex integration and a new “Gluing Approximation” technique. The convex integration part of the proof relies on the “Mikado flows” introduced by [Daneri, Székelyhidi] and the framework of estimates developed in the author’s previous work.

DOI : 10.4007/annals.2018.188.3.4

Philip Isett 1

1 University of Texas at Austin, Austin, TX and California Institute of Technology, Pasadena, CA
@article{10_4007_annals_2018_188_3_4,
     author = {Philip Isett},
     title = {A proof of {Onsager{\textquoteright}s} conjecture},
     journal = {Annals of mathematics},
     pages = {871--963},
     publisher = {mathdoc},
     volume = {188},
     number = {3},
     year = {2018},
     doi = {10.4007/annals.2018.188.3.4},
     mrnumber = {3866888},
     zbl = {06976275},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2018.188.3.4/}
}
TY  - JOUR
AU  - Philip Isett
TI  - A proof of Onsager’s conjecture
JO  - Annals of mathematics
PY  - 2018
SP  - 871
EP  - 963
VL  - 188
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2018.188.3.4/
DO  - 10.4007/annals.2018.188.3.4
LA  - en
ID  - 10_4007_annals_2018_188_3_4
ER  - 
%0 Journal Article
%A Philip Isett
%T A proof of Onsager’s conjecture
%J Annals of mathematics
%D 2018
%P 871-963
%V 188
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2018.188.3.4/
%R 10.4007/annals.2018.188.3.4
%G en
%F 10_4007_annals_2018_188_3_4
Philip Isett. A proof of Onsager’s conjecture. Annals of mathematics, Tome 188 (2018) no. 3, pp. 871-963. doi: 10.4007/annals.2018.188.3.4

Cité par Sources :