Voir la notice de l'article provenant de la source Annals of Mathematics website
In 1980, Gross conjectured a formula for the expected leading term at $s=0$ of the Deligne–Ribet $p$-adic $L$-function associated to a totally even character $\psi $ of a totally real field $F$. The conjecture states that after scaling by $L(\psi \omega ^{-1}, 0)$, this value is equal to a $p$-adic regulator of units in the abelian extension of $F$ cut out by $\psi \omega ^{-1}$. In this paper, we prove Gross’s conjecture.
Samit Dasgupta 1 ; Mahesh Kakde 2 ; Kevin Ventullo 3
@article{10_4007_annals_2018_188_3_3, author = {Samit Dasgupta and Mahesh Kakde and Kevin Ventullo}, title = {On the {Gross{\textendash}Stark} {Conjecture}}, journal = {Annals of mathematics}, pages = {833--870}, publisher = {mathdoc}, volume = {188}, number = {3}, year = {2018}, doi = {10.4007/annals.2018.188.3.3}, mrnumber = {3866887}, zbl = {06976274}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2018.188.3.3/} }
TY - JOUR AU - Samit Dasgupta AU - Mahesh Kakde AU - Kevin Ventullo TI - On the Gross–Stark Conjecture JO - Annals of mathematics PY - 2018 SP - 833 EP - 870 VL - 188 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4007/annals.2018.188.3.3/ DO - 10.4007/annals.2018.188.3.3 LA - en ID - 10_4007_annals_2018_188_3_3 ER -
%0 Journal Article %A Samit Dasgupta %A Mahesh Kakde %A Kevin Ventullo %T On the Gross–Stark Conjecture %J Annals of mathematics %D 2018 %P 833-870 %V 188 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4007/annals.2018.188.3.3/ %R 10.4007/annals.2018.188.3.3 %G en %F 10_4007_annals_2018_188_3_3
Samit Dasgupta; Mahesh Kakde; Kevin Ventullo. On the Gross–Stark Conjecture. Annals of mathematics, Tome 188 (2018) no. 3, pp. 833-870. doi: 10.4007/annals.2018.188.3.3
Cité par Sources :