Convergence of Ricci flows with bounded scalar curvature
Annals of mathematics, Tome 188 (2018) no. 3, pp. 753-831

Voir la notice de l'article provenant de la source Annals of Mathematics website

In this paper we prove convergence and compactness results for Ricci flows with bounded scalar curvature and entropy. More specifically, we show that Ricci flows with bounded scalar curvature converge smoothly away from a singular set of codimension $\geq 4$. We also establish a general form of the Hamilton-Tian Conjecture, which is even true in the Riemannian case.

DOI : 10.4007/annals.2018.188.3.2

Richard H. Bamler 1

1 University of California, Berkeley, CA
@article{10_4007_annals_2018_188_3_2,
     author = {Richard H. Bamler},
     title = {Convergence of {Ricci} flows with bounded scalar curvature},
     journal = {Annals of mathematics},
     pages = {753--831},
     publisher = {mathdoc},
     volume = {188},
     number = {3},
     year = {2018},
     doi = {10.4007/annals.2018.188.3.2},
     mrnumber = {3866886},
     zbl = {06976273},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2018.188.3.2/}
}
TY  - JOUR
AU  - Richard H. Bamler
TI  - Convergence of Ricci flows with bounded scalar curvature
JO  - Annals of mathematics
PY  - 2018
SP  - 753
EP  - 831
VL  - 188
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2018.188.3.2/
DO  - 10.4007/annals.2018.188.3.2
LA  - en
ID  - 10_4007_annals_2018_188_3_2
ER  - 
%0 Journal Article
%A Richard H. Bamler
%T Convergence of Ricci flows with bounded scalar curvature
%J Annals of mathematics
%D 2018
%P 753-831
%V 188
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2018.188.3.2/
%R 10.4007/annals.2018.188.3.2
%G en
%F 10_4007_annals_2018_188_3_2
Richard H. Bamler. Convergence of Ricci flows with bounded scalar curvature. Annals of mathematics, Tome 188 (2018) no. 3, pp. 753-831. doi: 10.4007/annals.2018.188.3.2

Cité par Sources :