Voir la notice de l'article provenant de la source Annals of Mathematics website
In this paper we prove convergence and compactness results for Ricci flows with bounded scalar curvature and entropy. More specifically, we show that Ricci flows with bounded scalar curvature converge smoothly away from a singular set of codimension $\geq 4$. We also establish a general form of the Hamilton-Tian Conjecture, which is even true in the Riemannian case.
@article{10_4007_annals_2018_188_3_2, author = {Richard H. Bamler}, title = {Convergence of {Ricci} flows with bounded scalar curvature}, journal = {Annals of mathematics}, pages = {753--831}, publisher = {mathdoc}, volume = {188}, number = {3}, year = {2018}, doi = {10.4007/annals.2018.188.3.2}, mrnumber = {3866886}, zbl = {06976273}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2018.188.3.2/} }
TY - JOUR AU - Richard H. Bamler TI - Convergence of Ricci flows with bounded scalar curvature JO - Annals of mathematics PY - 2018 SP - 753 EP - 831 VL - 188 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4007/annals.2018.188.3.2/ DO - 10.4007/annals.2018.188.3.2 LA - en ID - 10_4007_annals_2018_188_3_2 ER -
%0 Journal Article %A Richard H. Bamler %T Convergence of Ricci flows with bounded scalar curvature %J Annals of mathematics %D 2018 %P 753-831 %V 188 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4007/annals.2018.188.3.2/ %R 10.4007/annals.2018.188.3.2 %G en %F 10_4007_annals_2018_188_3_2
Richard H. Bamler. Convergence of Ricci flows with bounded scalar curvature. Annals of mathematics, Tome 188 (2018) no. 3, pp. 753-831. doi: 10.4007/annals.2018.188.3.2
Cité par Sources :