Voir la notice de l'article provenant de la source Annals of Mathematics website
We prove Turner’s conjecture, which describes the blocks of the Hecke algebras of the symmetric groups up to derived equivalence as certain explicit Turner double algebras. Turner doubles are Schur-algebra-like `local’ objects, which replace wreath products of Brauer tree algebras in the context of the Broué abelian defect group conjecture for blocks of symmetric groups with non-abelian defect groups. The main tools used in the proof are generalized Schur algebras corresponding to wreath products of zigzag algebras and imaginary semicuspidal quotients of affine KLR algebras.
Anton Evseev 1 ; Alexander Kleshchev 2
@article{10_4007_annals_2018_188_2_2, author = {Anton Evseev and Alexander Kleshchev}, title = {Blocks of symmetric groups, semicuspidal {KLR} algebras and zigzag {Schur-Weyl} duality}, journal = {Annals of mathematics}, pages = {453--512}, publisher = {mathdoc}, volume = {188}, number = {2}, year = {2018}, doi = {10.4007/annals.2018.188.2.2}, mrnumber = {3862945}, zbl = {06921185}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2018.188.2.2/} }
TY - JOUR AU - Anton Evseev AU - Alexander Kleshchev TI - Blocks of symmetric groups, semicuspidal KLR algebras and zigzag Schur-Weyl duality JO - Annals of mathematics PY - 2018 SP - 453 EP - 512 VL - 188 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4007/annals.2018.188.2.2/ DO - 10.4007/annals.2018.188.2.2 LA - en ID - 10_4007_annals_2018_188_2_2 ER -
%0 Journal Article %A Anton Evseev %A Alexander Kleshchev %T Blocks of symmetric groups, semicuspidal KLR algebras and zigzag Schur-Weyl duality %J Annals of mathematics %D 2018 %P 453-512 %V 188 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4007/annals.2018.188.2.2/ %R 10.4007/annals.2018.188.2.2 %G en %F 10_4007_annals_2018_188_2_2
Anton Evseev; Alexander Kleshchev. Blocks of symmetric groups, semicuspidal KLR algebras and zigzag Schur-Weyl duality. Annals of mathematics, Tome 188 (2018) no. 2, pp. 453-512. doi: 10.4007/annals.2018.188.2.2
Cité par Sources :