Hodge theory for combinatorial geometries
Annals of mathematics, Tome 188 (2018) no. 2, pp. 381-452

Voir la notice de l'article provenant de la source Annals of Mathematics website

We prove the hard Lefschetz theorem and the Hodge-Riemann relations for a commutative ring associated to an arbitrary matroid M. We use the Hodge-Riemann relations to resolve a conjecture of Heron, Rota, and Welsh that postulates the log-concavity of the coefficients of the characteristic polynomial of $\mathrm {M}$. We furthermore conclude that the $f$-vector of the independence complex of a matroid forms a log-concave sequence, proving a conjecture of Mason and Welsh for general matroids.

DOI : 10.4007/annals.2018.188.2.1

Karim Adiprasito 1 ; June Huh 2 ; Eric Katz 3

1 Einstein Institute of Mathematics, The Hebrew University of Jerusalem, Jerusalem, Israel
2 Institute for Advanced Study, Princeton, NJ, USA and Korea Institute for Advanced Study, Seoul, Korea
3 Department of Mathematics, The Ohio State University, Columbus, Ohio, USA
@article{10_4007_annals_2018_188_2_1,
     author = {Karim Adiprasito and June Huh and Eric Katz},
     title = {Hodge theory for combinatorial geometries},
     journal = {Annals of mathematics},
     pages = {381--452},
     publisher = {mathdoc},
     volume = {188},
     number = {2},
     year = {2018},
     doi = {10.4007/annals.2018.188.2.1},
     mrnumber = {3862944},
     zbl = {06921184},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2018.188.2.1/}
}
TY  - JOUR
AU  - Karim Adiprasito
AU  - June Huh
AU  - Eric Katz
TI  - Hodge theory for combinatorial geometries
JO  - Annals of mathematics
PY  - 2018
SP  - 381
EP  - 452
VL  - 188
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2018.188.2.1/
DO  - 10.4007/annals.2018.188.2.1
LA  - en
ID  - 10_4007_annals_2018_188_2_1
ER  - 
%0 Journal Article
%A Karim Adiprasito
%A June Huh
%A Eric Katz
%T Hodge theory for combinatorial geometries
%J Annals of mathematics
%D 2018
%P 381-452
%V 188
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2018.188.2.1/
%R 10.4007/annals.2018.188.2.1
%G en
%F 10_4007_annals_2018_188_2_1
Karim Adiprasito; June Huh; Eric Katz. Hodge theory for combinatorial geometries. Annals of mathematics, Tome 188 (2018) no. 2, pp. 381-452. doi: 10.4007/annals.2018.188.2.1

Cité par Sources :