Voir la notice de l'article provenant de la source Annals of Mathematics website
We prove the hard Lefschetz theorem and the Hodge-Riemann relations for a commutative ring associated to an arbitrary matroid M. We use the Hodge-Riemann relations to resolve a conjecture of Heron, Rota, and Welsh that postulates the log-concavity of the coefficients of the characteristic polynomial of $\mathrm {M}$. We furthermore conclude that the $f$-vector of the independence complex of a matroid forms a log-concave sequence, proving a conjecture of Mason and Welsh for general matroids.
Karim Adiprasito 1 ; June Huh 2 ; Eric Katz 3
@article{10_4007_annals_2018_188_2_1, author = {Karim Adiprasito and June Huh and Eric Katz}, title = {Hodge theory for combinatorial geometries}, journal = {Annals of mathematics}, pages = {381--452}, publisher = {mathdoc}, volume = {188}, number = {2}, year = {2018}, doi = {10.4007/annals.2018.188.2.1}, mrnumber = {3862944}, zbl = {06921184}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2018.188.2.1/} }
TY - JOUR AU - Karim Adiprasito AU - June Huh AU - Eric Katz TI - Hodge theory for combinatorial geometries JO - Annals of mathematics PY - 2018 SP - 381 EP - 452 VL - 188 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4007/annals.2018.188.2.1/ DO - 10.4007/annals.2018.188.2.1 LA - en ID - 10_4007_annals_2018_188_2_1 ER -
%0 Journal Article %A Karim Adiprasito %A June Huh %A Eric Katz %T Hodge theory for combinatorial geometries %J Annals of mathematics %D 2018 %P 381-452 %V 188 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4007/annals.2018.188.2.1/ %R 10.4007/annals.2018.188.2.1 %G en %F 10_4007_annals_2018_188_2_1
Karim Adiprasito; June Huh; Eric Katz. Hodge theory for combinatorial geometries. Annals of mathematics, Tome 188 (2018) no. 2, pp. 381-452. doi: 10.4007/annals.2018.188.2.1
Cité par Sources :