Voir la notice de l'article provenant de la source Annals of Mathematics website
We compute the algebraic hull of the Kontsevich–Zorich cocycle over any $ \mathrm {GL}^+_2(\mathbb {R}) $ invariant subvariety of the Hodge bundle, and derive from this finiteness results on such subvarieties.
Alex Eskin 1 ; Simion Filip 2 ; Alex Wright 3
@article{10_4007_annals_2018_188_1_5, author = {Alex Eskin and Simion Filip and Alex Wright}, title = {The algebraic hull of the {Kontsevich{\textendash}Zorich} cocycle}, journal = {Annals of mathematics}, pages = {281--313}, publisher = {mathdoc}, volume = {188}, number = {1}, year = {2018}, doi = {10.4007/annals.2018.188.1.5}, mrnumber = {3815463}, zbl = {06890813}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2018.188.1.5/} }
TY - JOUR AU - Alex Eskin AU - Simion Filip AU - Alex Wright TI - The algebraic hull of the Kontsevich–Zorich cocycle JO - Annals of mathematics PY - 2018 SP - 281 EP - 313 VL - 188 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4007/annals.2018.188.1.5/ DO - 10.4007/annals.2018.188.1.5 LA - en ID - 10_4007_annals_2018_188_1_5 ER -
%0 Journal Article %A Alex Eskin %A Simion Filip %A Alex Wright %T The algebraic hull of the Kontsevich–Zorich cocycle %J Annals of mathematics %D 2018 %P 281-313 %V 188 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4007/annals.2018.188.1.5/ %R 10.4007/annals.2018.188.1.5 %G en %F 10_4007_annals_2018_188_1_5
Alex Eskin; Simion Filip; Alex Wright. The algebraic hull of the Kontsevich–Zorich cocycle. Annals of mathematics, Tome 188 (2018) no. 1, pp. 281-313. doi: 10.4007/annals.2018.188.1.5
Cité par Sources :