Voir la notice de l'article provenant de la source Annals of Mathematics website
We prove several results on (fractal) geometric properties of the classical Markov and Lagrange spectra. In particular, we prove that the Hausdorff dimensions of intersections of both spectra with half-lines always coincide, and we may assume any real value in the interval $[0, 1]$.
@article{10_4007_annals_2018_188_1_3, author = {Carlos Gustavo Moreira}, title = {Geometric properties of the {Markov} and {Lagrange} spectra}, journal = {Annals of mathematics}, pages = {145--170}, publisher = {mathdoc}, volume = {188}, number = {1}, year = {2018}, doi = {10.4007/annals.2018.188.1.3}, mrnumber = {3815461}, zbl = {06890811}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2018.188.1.3/} }
TY - JOUR AU - Carlos Gustavo Moreira TI - Geometric properties of the Markov and Lagrange spectra JO - Annals of mathematics PY - 2018 SP - 145 EP - 170 VL - 188 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4007/annals.2018.188.1.3/ DO - 10.4007/annals.2018.188.1.3 LA - en ID - 10_4007_annals_2018_188_1_3 ER -
%0 Journal Article %A Carlos Gustavo Moreira %T Geometric properties of the Markov and Lagrange spectra %J Annals of mathematics %D 2018 %P 145-170 %V 188 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4007/annals.2018.188.1.3/ %R 10.4007/annals.2018.188.1.3 %G en %F 10_4007_annals_2018_188_1_3
Carlos Gustavo Moreira. Geometric properties of the Markov and Lagrange spectra. Annals of mathematics, Tome 188 (2018) no. 1, pp. 145-170. doi: 10.4007/annals.2018.188.1.3
Cité par Sources :