Coarse hyperbolicity and closed orbits for quasigeodesic flows
Annals of mathematics, Tome 188 (2018) no. 1, pp. 1-48

Voir la notice de l'article provenant de la source Annals of Mathematics website

We prove a conjecture of Calegari’s, that every quasigeodesic flow on a closed hyperbolic $3$-manifold contains a closed orbit.

DOI : 10.4007/annals.2018.188.1.1

Steven Frankel 1

1 Washington University in St. Louis, St. Louis, MO
@article{10_4007_annals_2018_188_1_1,
     author = {Steven Frankel},
     title = {Coarse hyperbolicity and closed orbits for quasigeodesic flows},
     journal = {Annals of mathematics},
     pages = {1--48},
     publisher = {mathdoc},
     volume = {188},
     number = {1},
     year = {2018},
     doi = {10.4007/annals.2018.188.1.1},
     mrnumber = {3815459},
     zbl = {06890809},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2018.188.1.1/}
}
TY  - JOUR
AU  - Steven Frankel
TI  - Coarse hyperbolicity and closed orbits for quasigeodesic flows
JO  - Annals of mathematics
PY  - 2018
SP  - 1
EP  - 48
VL  - 188
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2018.188.1.1/
DO  - 10.4007/annals.2018.188.1.1
LA  - en
ID  - 10_4007_annals_2018_188_1_1
ER  - 
%0 Journal Article
%A Steven Frankel
%T Coarse hyperbolicity and closed orbits for quasigeodesic flows
%J Annals of mathematics
%D 2018
%P 1-48
%V 188
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2018.188.1.1/
%R 10.4007/annals.2018.188.1.1
%G en
%F 10_4007_annals_2018_188_1_1
Steven Frankel. Coarse hyperbolicity and closed orbits for quasigeodesic flows. Annals of mathematics, Tome 188 (2018) no. 1, pp. 1-48. doi: 10.4007/annals.2018.188.1.1

Cité par Sources :