Voir la notice de l'article provenant de la source Annals of Mathematics website
We prove a conjecture of Calegari’s, that every quasigeodesic flow on a closed hyperbolic $3$-manifold contains a closed orbit.
@article{10_4007_annals_2018_188_1_1, author = {Steven Frankel}, title = {Coarse hyperbolicity and closed orbits for quasigeodesic flows}, journal = {Annals of mathematics}, pages = {1--48}, publisher = {mathdoc}, volume = {188}, number = {1}, year = {2018}, doi = {10.4007/annals.2018.188.1.1}, mrnumber = {3815459}, zbl = {06890809}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2018.188.1.1/} }
TY - JOUR AU - Steven Frankel TI - Coarse hyperbolicity and closed orbits for quasigeodesic flows JO - Annals of mathematics PY - 2018 SP - 1 EP - 48 VL - 188 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4007/annals.2018.188.1.1/ DO - 10.4007/annals.2018.188.1.1 LA - en ID - 10_4007_annals_2018_188_1_1 ER -
%0 Journal Article %A Steven Frankel %T Coarse hyperbolicity and closed orbits for quasigeodesic flows %J Annals of mathematics %D 2018 %P 1-48 %V 188 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4007/annals.2018.188.1.1/ %R 10.4007/annals.2018.188.1.1 %G en %F 10_4007_annals_2018_188_1_1
Steven Frankel. Coarse hyperbolicity and closed orbits for quasigeodesic flows. Annals of mathematics, Tome 188 (2018) no. 1, pp. 1-48. doi: 10.4007/annals.2018.188.1.1
Cité par Sources :