Voir la notice de l'article provenant de la source Annals of Mathematics website
For almost all Riemannian metrics (in the $C^\infty $ Baire sense) on a closed manifold $M^{n+1}$, $3\leq (n+1)\leq 7$, we prove that the union of all closed, smooth, embedded minimal hypersurfaces is dense. This implies there are infinitely many minimal hypersurfaces, thus proving a conjecture of Yau (1982) for generic metrics.
Kei Irie 1 ; Fernando C. Marques 2 ; André Neves 3
@article{10_4007_annals_2018_187_3_8, author = {Kei Irie and Fernando C. Marques and Andr\'e Neves}, title = {Density of minimal hypersurfaces for generic metrics}, journal = {Annals of mathematics}, pages = {963--972}, publisher = {mathdoc}, volume = {187}, number = {3}, year = {2018}, doi = {10.4007/annals.2018.187.3.8}, mrnumber = {3779962}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2018.187.3.8/} }
TY - JOUR AU - Kei Irie AU - Fernando C. Marques AU - André Neves TI - Density of minimal hypersurfaces for generic metrics JO - Annals of mathematics PY - 2018 SP - 963 EP - 972 VL - 187 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4007/annals.2018.187.3.8/ DO - 10.4007/annals.2018.187.3.8 LA - en ID - 10_4007_annals_2018_187_3_8 ER -
%0 Journal Article %A Kei Irie %A Fernando C. Marques %A André Neves %T Density of minimal hypersurfaces for generic metrics %J Annals of mathematics %D 2018 %P 963-972 %V 187 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4007/annals.2018.187.3.8/ %R 10.4007/annals.2018.187.3.8 %G en %F 10_4007_annals_2018_187_3_8
Kei Irie; Fernando C. Marques; André Neves. Density of minimal hypersurfaces for generic metrics. Annals of mathematics, Tome 187 (2018) no. 3, pp. 963-972. doi: 10.4007/annals.2018.187.3.8
Cité par Sources :