Density of minimal hypersurfaces for generic metrics
Annals of mathematics, Tome 187 (2018) no. 3, pp. 963-972

Voir la notice de l'article provenant de la source Annals of Mathematics website

For almost all Riemannian metrics (in the $C^\infty $ Baire sense) on a closed manifold $M^{n+1}$, $3\leq (n+1)\leq 7$, we prove that the union of all closed, smooth, embedded minimal hypersurfaces is dense. This implies there are infinitely many minimal hypersurfaces, thus proving a conjecture of Yau (1982) for generic metrics.

DOI : 10.4007/annals.2018.187.3.8

Kei Irie 1 ; Fernando C. Marques 2 ; André Neves 3

1 Research Institute for Mathematical Sciences Kyoto University, Kyoto Japan and Simons Center for Geometry and Physics State, University of New York Stony Brook, NY
2 Department of Mathematics, Princeton University, Princeton, NJ
3 Department of Mathematics, University of Chicago, Chicago, IL and Imperial College London, London, UK
@article{10_4007_annals_2018_187_3_8,
     author = {Kei Irie and Fernando C. Marques and Andr\'e Neves},
     title = {Density of minimal hypersurfaces for generic metrics},
     journal = {Annals of mathematics},
     pages = {963--972},
     publisher = {mathdoc},
     volume = {187},
     number = {3},
     year = {2018},
     doi = {10.4007/annals.2018.187.3.8},
     mrnumber = {3779962},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2018.187.3.8/}
}
TY  - JOUR
AU  - Kei Irie
AU  - Fernando C. Marques
AU  - André Neves
TI  - Density of minimal hypersurfaces for generic metrics
JO  - Annals of mathematics
PY  - 2018
SP  - 963
EP  - 972
VL  - 187
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2018.187.3.8/
DO  - 10.4007/annals.2018.187.3.8
LA  - en
ID  - 10_4007_annals_2018_187_3_8
ER  - 
%0 Journal Article
%A Kei Irie
%A Fernando C. Marques
%A André Neves
%T Density of minimal hypersurfaces for generic metrics
%J Annals of mathematics
%D 2018
%P 963-972
%V 187
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2018.187.3.8/
%R 10.4007/annals.2018.187.3.8
%G en
%F 10_4007_annals_2018_187_3_8
Kei Irie; Fernando C. Marques; André Neves. Density of minimal hypersurfaces for generic metrics. Annals of mathematics, Tome 187 (2018) no. 3, pp. 963-972. doi: 10.4007/annals.2018.187.3.8

Cité par Sources :