Voir la notice de l'article provenant de la source Annals of Mathematics website
Given $M$ a Riemannian manifold with (possibly empty) boundary, we show that its volume spectrum $\{\omega _p(M)\}_{p\in \mathbb {N}}$ satisfies a Weyl law that was conjectured by Gromov.
Yevgeny Liokumovich 1 ; Fernando C. Marques 2 ; André Neves 3
@article{10_4007_annals_2018_187_3_7, author = {Yevgeny Liokumovich and Fernando C. Marques and Andr\'e Neves}, title = {Weyl law for the volume spectrum}, journal = {Annals of mathematics}, pages = {933--961}, publisher = {mathdoc}, volume = {187}, number = {3}, year = {2018}, doi = {10.4007/annals.2018.187.3.7}, mrnumber = {3779961}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2018.187.3.7/} }
TY - JOUR AU - Yevgeny Liokumovich AU - Fernando C. Marques AU - André Neves TI - Weyl law for the volume spectrum JO - Annals of mathematics PY - 2018 SP - 933 EP - 961 VL - 187 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4007/annals.2018.187.3.7/ DO - 10.4007/annals.2018.187.3.7 LA - en ID - 10_4007_annals_2018_187_3_7 ER -
%0 Journal Article %A Yevgeny Liokumovich %A Fernando C. Marques %A André Neves %T Weyl law for the volume spectrum %J Annals of mathematics %D 2018 %P 933-961 %V 187 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4007/annals.2018.187.3.7/ %R 10.4007/annals.2018.187.3.7 %G en %F 10_4007_annals_2018_187_3_7
Yevgeny Liokumovich; Fernando C. Marques; André Neves. Weyl law for the volume spectrum. Annals of mathematics, Tome 187 (2018) no. 3, pp. 933-961. doi: 10.4007/annals.2018.187.3.7
Cité par Sources :