Spectral gaps without the pressure condition
Annals of mathematics, Tome 187 (2018) no. 3, pp. 825-867

Voir la notice de l'article provenant de la source Annals of Mathematics website

For all convex co-compact hyperbolic surfaces, we prove the existence of an essential spectral gap, that is, a strip beyond the unitarity axis in which the Selberg zeta function has only finitely many zeroes. We make no assumption on the dimension $\delta $ of the limit set; in particular, we do not require the pressure condition $\delta \leq {1\over 2}$. This is the first result of this kind for quantum Hamiltonians. \par Our proof follows the strategy developed by Dyatlov and Zahl. The main new ingredient is the fractal uncertainty principle for $\delta $-regular sets with $\delta <1$, which may be of independent interest.

DOI : 10.4007/annals.2018.187.3.5

Jean Bourgain 1 ; Semyon Dyatlov 2

1 Institute for Advanced Study, Princeton, NJ
2 Massachusetts Institute of Technology, Cambridge, MA
@article{10_4007_annals_2018_187_3_5,
     author = {Jean Bourgain and Semyon Dyatlov},
     title = {Spectral gaps without the pressure condition},
     journal = {Annals of mathematics},
     pages = {825--867},
     publisher = {mathdoc},
     volume = {187},
     number = {3},
     year = {2018},
     doi = {10.4007/annals.2018.187.3.5},
     mrnumber = {3779959},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2018.187.3.5/}
}
TY  - JOUR
AU  - Jean Bourgain
AU  - Semyon Dyatlov
TI  - Spectral gaps without the pressure condition
JO  - Annals of mathematics
PY  - 2018
SP  - 825
EP  - 867
VL  - 187
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2018.187.3.5/
DO  - 10.4007/annals.2018.187.3.5
LA  - en
ID  - 10_4007_annals_2018_187_3_5
ER  - 
%0 Journal Article
%A Jean Bourgain
%A Semyon Dyatlov
%T Spectral gaps without the pressure condition
%J Annals of mathematics
%D 2018
%P 825-867
%V 187
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2018.187.3.5/
%R 10.4007/annals.2018.187.3.5
%G en
%F 10_4007_annals_2018_187_3_5
Jean Bourgain; Semyon Dyatlov. Spectral gaps without the pressure condition. Annals of mathematics, Tome 187 (2018) no. 3, pp. 825-867. doi: 10.4007/annals.2018.187.3.5

Cité par Sources :