Stability of the elliptic Harnack inequality
Annals of mathematics, Tome 187 (2018) no. 3, pp. 777-823

Voir la notice de l'article provenant de la source Annals of Mathematics website

We prove that the elliptic Harnack inequality (on a manifold, graph, or suitably regular metric measure space) is stable under bounded perturbations, as well as rough isometries.

DOI : 10.4007/annals.2018.187.3.4

Martin T. Barlow 1 ; Mathav Murugan 2

1 University of British Columbia, Vancouver, BC, Canada
2 University of British Columbia and Pacific Institute for the Mathematical Sciences, Vancouver, BC, Canada
@article{10_4007_annals_2018_187_3_4,
     author = {Martin T. Barlow and Mathav Murugan},
     title = {Stability of the elliptic {Harnack} inequality},
     journal = {Annals of mathematics},
     pages = {777--823},
     publisher = {mathdoc},
     volume = {187},
     number = {3},
     year = {2018},
     doi = {10.4007/annals.2018.187.3.4},
     mrnumber = {3779958},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2018.187.3.4/}
}
TY  - JOUR
AU  - Martin T. Barlow
AU  - Mathav Murugan
TI  - Stability of the elliptic Harnack inequality
JO  - Annals of mathematics
PY  - 2018
SP  - 777
EP  - 823
VL  - 187
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2018.187.3.4/
DO  - 10.4007/annals.2018.187.3.4
LA  - en
ID  - 10_4007_annals_2018_187_3_4
ER  - 
%0 Journal Article
%A Martin T. Barlow
%A Mathav Murugan
%T Stability of the elliptic Harnack inequality
%J Annals of mathematics
%D 2018
%P 777-823
%V 187
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2018.187.3.4/
%R 10.4007/annals.2018.187.3.4
%G en
%F 10_4007_annals_2018_187_3_4
Martin T. Barlow; Mathav Murugan. Stability of the elliptic Harnack inequality. Annals of mathematics, Tome 187 (2018) no. 3, pp. 777-823. doi: 10.4007/annals.2018.187.3.4

Cité par Sources :