Voir la notice de l'article provenant de la source Annals of Mathematics website
We prove that the elliptic Harnack inequality (on a manifold, graph, or suitably regular metric measure space) is stable under bounded perturbations, as well as rough isometries.
Martin T. Barlow 1 ; Mathav Murugan 2
@article{10_4007_annals_2018_187_3_4, author = {Martin T. Barlow and Mathav Murugan}, title = {Stability of the elliptic {Harnack} inequality}, journal = {Annals of mathematics}, pages = {777--823}, publisher = {mathdoc}, volume = {187}, number = {3}, year = {2018}, doi = {10.4007/annals.2018.187.3.4}, mrnumber = {3779958}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2018.187.3.4/} }
TY - JOUR AU - Martin T. Barlow AU - Mathav Murugan TI - Stability of the elliptic Harnack inequality JO - Annals of mathematics PY - 2018 SP - 777 EP - 823 VL - 187 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4007/annals.2018.187.3.4/ DO - 10.4007/annals.2018.187.3.4 LA - en ID - 10_4007_annals_2018_187_3_4 ER -
%0 Journal Article %A Martin T. Barlow %A Mathav Murugan %T Stability of the elliptic Harnack inequality %J Annals of mathematics %D 2018 %P 777-823 %V 187 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4007/annals.2018.187.3.4/ %R 10.4007/annals.2018.187.3.4 %G en %F 10_4007_annals_2018_187_3_4
Martin T. Barlow; Mathav Murugan. Stability of the elliptic Harnack inequality. Annals of mathematics, Tome 187 (2018) no. 3, pp. 777-823. doi: 10.4007/annals.2018.187.3.4
Cité par Sources :