Palindromic subshifts and simple periodic groups of intermediate growth
Annals of mathematics, Tome 187 (2018) no. 3, pp. 667-719

Voir la notice de l'article provenant de la source Annals of Mathematics website

We describe a new class of groups of Burnside type, by giving a procedure transforming an arbitrary non-free minimal action of the dihedral group on a Cantor set into an orbit-equivalent action of an infinite finitely generated periodic group. We show that if the associated Schreier graphs are linearly repetitive, then the group is of intermediate growth. In particular, this gives first examples of simple groups of intermediate growth.

DOI : 10.4007/annals.2018.187.3.2

Volodymyr Nekrashevych 1

1 Texas A&M University, College Station, TX
@article{10_4007_annals_2018_187_3_2,
     author = {Volodymyr Nekrashevych},
     title = {Palindromic subshifts and simple periodic groups of intermediate growth},
     journal = {Annals of mathematics},
     pages = {667--719},
     publisher = {mathdoc},
     volume = {187},
     number = {3},
     year = {2018},
     doi = {10.4007/annals.2018.187.3.2},
     mrnumber = {3779956},
     zbl = {06854655},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2018.187.3.2/}
}
TY  - JOUR
AU  - Volodymyr Nekrashevych
TI  - Palindromic subshifts and simple periodic groups of intermediate growth
JO  - Annals of mathematics
PY  - 2018
SP  - 667
EP  - 719
VL  - 187
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2018.187.3.2/
DO  - 10.4007/annals.2018.187.3.2
LA  - en
ID  - 10_4007_annals_2018_187_3_2
ER  - 
%0 Journal Article
%A Volodymyr Nekrashevych
%T Palindromic subshifts and simple periodic groups of intermediate growth
%J Annals of mathematics
%D 2018
%P 667-719
%V 187
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2018.187.3.2/
%R 10.4007/annals.2018.187.3.2
%G en
%F 10_4007_annals_2018_187_3_2
Volodymyr Nekrashevych. Palindromic subshifts and simple periodic groups of intermediate growth. Annals of mathematics, Tome 187 (2018) no. 3, pp. 667-719. doi: 10.4007/annals.2018.187.3.2

Cité par Sources :