Voir la notice de l'article provenant de la source Annals of Mathematics website
We prove some semipositivity theorems for singular varieties coming from graded polarizable admissible variations of mixed Hodge structure. As an application, we obtain that the moduli functor of stable varieties is semipositive in the sense of Kollár. This completes Kollár’s projectivity criterion for the moduli spaces of higher-dimensional stable varieties.
@article{10_4007_annals_2018_187_3_1, author = {Osamu Fujino}, title = {Semipositivity theorems for moduli problems}, journal = {Annals of mathematics}, pages = {639--665}, publisher = {mathdoc}, volume = {187}, number = {3}, year = {2018}, doi = {10.4007/annals.2018.187.3.1}, mrnumber = {3779955}, zbl = {06854654}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2018.187.3.1/} }
TY - JOUR AU - Osamu Fujino TI - Semipositivity theorems for moduli problems JO - Annals of mathematics PY - 2018 SP - 639 EP - 665 VL - 187 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4007/annals.2018.187.3.1/ DO - 10.4007/annals.2018.187.3.1 LA - en ID - 10_4007_annals_2018_187_3_1 ER -
Osamu Fujino. Semipositivity theorems for moduli problems. Annals of mathematics, Tome 187 (2018) no. 3, pp. 639-665. doi: 10.4007/annals.2018.187.3.1
Cité par Sources :