Semipositivity theorems for moduli problems
Annals of mathematics, Tome 187 (2018) no. 3, pp. 639-665

Voir la notice de l'article provenant de la source Annals of Mathematics website

We prove some semipositivity theorems for singular varieties coming from graded polarizable admissible variations of mixed Hodge structure. As an application, we obtain that the moduli functor of stable varieties is semipositive in the sense of Kollár. This completes Kollár’s projectivity criterion for the moduli spaces of higher-dimensional stable varieties.

DOI : 10.4007/annals.2018.187.3.1

Osamu Fujino 1

1 Department of Mathematics, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
@article{10_4007_annals_2018_187_3_1,
     author = {Osamu Fujino},
     title = {Semipositivity theorems for moduli problems},
     journal = {Annals of mathematics},
     pages = {639--665},
     publisher = {mathdoc},
     volume = {187},
     number = {3},
     year = {2018},
     doi = {10.4007/annals.2018.187.3.1},
     mrnumber = {3779955},
     zbl = {06854654},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2018.187.3.1/}
}
TY  - JOUR
AU  - Osamu Fujino
TI  - Semipositivity theorems for moduli problems
JO  - Annals of mathematics
PY  - 2018
SP  - 639
EP  - 665
VL  - 187
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2018.187.3.1/
DO  - 10.4007/annals.2018.187.3.1
LA  - en
ID  - 10_4007_annals_2018_187_3_1
ER  - 
%0 Journal Article
%A Osamu Fujino
%T Semipositivity theorems for moduli problems
%J Annals of mathematics
%D 2018
%P 639-665
%V 187
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2018.187.3.1/
%R 10.4007/annals.2018.187.3.1
%G en
%F 10_4007_annals_2018_187_3_1
Osamu Fujino. Semipositivity theorems for moduli problems. Annals of mathematics, Tome 187 (2018) no. 3, pp. 639-665. doi: 10.4007/annals.2018.187.3.1

Cité par Sources :