On the averaged Colmez conjecture
Annals of mathematics, Tome 187 (2018) no. 2, pp. 533-638

Voir la notice de l'article provenant de la source Annals of Mathematics website

The Colmez conjecture is a formula expressing the Faltings height of an abelian variety with complex multiplication in terms of some linear combination of logarithmic derivatives of Artin $L$-functions. The aim of this paper to prove an averaged version of the conjecture, which was also proposed by Colmez.

DOI : 10.4007/annals.2018.187.2.4

Xinyi Yuan 1 ; Shou-Wu Zhang 2

1 University of California at Berkeley, Berkeley, CA
2 Princeton University, Princeton, NJ
@article{10_4007_annals_2018_187_2_4,
     author = {Xinyi Yuan and Shou-Wu Zhang},
     title = {On the averaged {Colmez} conjecture},
     journal = {Annals of mathematics},
     pages = {533--638},
     publisher = {mathdoc},
     volume = {187},
     number = {2},
     year = {2018},
     doi = {10.4007/annals.2018.187.2.4},
     mrnumber = {3744857},
     zbl = {06841545},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2018.187.2.4/}
}
TY  - JOUR
AU  - Xinyi Yuan
AU  - Shou-Wu Zhang
TI  - On the averaged Colmez conjecture
JO  - Annals of mathematics
PY  - 2018
SP  - 533
EP  - 638
VL  - 187
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2018.187.2.4/
DO  - 10.4007/annals.2018.187.2.4
LA  - en
ID  - 10_4007_annals_2018_187_2_4
ER  - 
%0 Journal Article
%A Xinyi Yuan
%A Shou-Wu Zhang
%T On the averaged Colmez conjecture
%J Annals of mathematics
%D 2018
%P 533-638
%V 187
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2018.187.2.4/
%R 10.4007/annals.2018.187.2.4
%G en
%F 10_4007_annals_2018_187_2_4
Xinyi Yuan; Shou-Wu Zhang. On the averaged Colmez conjecture. Annals of mathematics, Tome 187 (2018) no. 2, pp. 533-638. doi: 10.4007/annals.2018.187.2.4

Cité par Sources :