Voir la notice de l'article provenant de la source Annals of Mathematics website
Let $M$ be the Shimura variety associated with the group of spinor similitudes of a quadratic space over $\mathbb {Q}$ of signature $(n,2)$. We prove a conjecture of Bruinier-Kudla-Yang, relating the arithmetic intersection multiplicities of special divisors and big CM points on $M$ to the central derivatives of certain $L$-functions.
Fabrizio Andreatta 1 ; Eyal Z. Goren 2 ; Benjamin Howard 3 ; Keerthi Madapusi Pera 4
@article{10_4007_annals_2018_187_2_3, author = {Fabrizio Andreatta and Eyal Z. Goren and Benjamin Howard and Keerthi Madapusi Pera}, title = {Faltings heights of abelian varieties with complex multiplication}, journal = {Annals of mathematics}, pages = {391--531}, publisher = {mathdoc}, volume = {187}, number = {2}, year = {2018}, doi = {10.4007/annals.2018.187.2.3}, mrnumber = {3744856}, zbl = {06841544}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2018.187.2.3/} }
TY - JOUR AU - Fabrizio Andreatta AU - Eyal Z. Goren AU - Benjamin Howard AU - Keerthi Madapusi Pera TI - Faltings heights of abelian varieties with complex multiplication JO - Annals of mathematics PY - 2018 SP - 391 EP - 531 VL - 187 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4007/annals.2018.187.2.3/ DO - 10.4007/annals.2018.187.2.3 LA - en ID - 10_4007_annals_2018_187_2_3 ER -
%0 Journal Article %A Fabrizio Andreatta %A Eyal Z. Goren %A Benjamin Howard %A Keerthi Madapusi Pera %T Faltings heights of abelian varieties with complex multiplication %J Annals of mathematics %D 2018 %P 391-531 %V 187 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4007/annals.2018.187.2.3/ %R 10.4007/annals.2018.187.2.3 %G en %F 10_4007_annals_2018_187_2_3
Fabrizio Andreatta; Eyal Z. Goren; Benjamin Howard; Keerthi Madapusi Pera. Faltings heights of abelian varieties with complex multiplication. Annals of mathematics, Tome 187 (2018) no. 2, pp. 391-531. doi: 10.4007/annals.2018.187.2.3
Cité par Sources :