The André-Oort conjecture for $\mathcal {A}_g$
Annals of mathematics, Tome 187 (2018) no. 2, pp. 379-390

Voir la notice de l'article provenant de la source Annals of Mathematics website

We give a proof of the André-Oort conjecture for $\mathcal {A}_g$ — the moduli space of principally polarized abelian varieties. In particular, we show that a recently proven “averaged” version of the Colmez conjecture yields lower bounds for Galois orbits of CM points. The André-Oort conjecture then follows from previous work of Pila and the author.

DOI : 10.4007/annals.2018.187.2.2

Jacob Tsimerman 1

1 University of Toronto, Toronto, Ontario, Canada
@article{10_4007_annals_2018_187_2_2,
     author = {Jacob Tsimerman},
     title = {The {Andr\'e-Oort} conjecture for $\mathcal  {A}_g$},
     journal = {Annals of mathematics},
     pages = {379--390},
     publisher = {mathdoc},
     volume = {187},
     number = {2},
     year = {2018},
     doi = {10.4007/annals.2018.187.2.2},
     mrnumber = {3744855},
     zbl = {06841543},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2018.187.2.2/}
}
TY  - JOUR
AU  - Jacob Tsimerman
TI  - The André-Oort conjecture for $\mathcal  {A}_g$
JO  - Annals of mathematics
PY  - 2018
SP  - 379
EP  - 390
VL  - 187
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2018.187.2.2/
DO  - 10.4007/annals.2018.187.2.2
LA  - en
ID  - 10_4007_annals_2018_187_2_2
ER  - 
%0 Journal Article
%A Jacob Tsimerman
%T The André-Oort conjecture for $\mathcal  {A}_g$
%J Annals of mathematics
%D 2018
%P 379-390
%V 187
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2018.187.2.2/
%R 10.4007/annals.2018.187.2.2
%G en
%F 10_4007_annals_2018_187_2_2
Jacob Tsimerman. The André-Oort conjecture for $\mathcal  {A}_g$. Annals of mathematics, Tome 187 (2018) no. 2, pp. 379-390. doi: 10.4007/annals.2018.187.2.2

Cité par Sources :