Hyperbolic triangles without embedded eigenvalues
Annals of mathematics, Tome 187 (2018) no. 2, pp. 301-377

Voir la notice de l'article provenant de la source Annals of Mathematics website

We consider the Neumann Laplacian acting on square-integrable functions on a triangle in the hyperbolic plane that has one cusp. We show that the generic such triangle has no eigenvalues embedded in its continuous spectrum. To prove this result we study the behavior of the real-analytic eigenvalue branches of a degenerating family of triangles. In particular, we use a careful analysis of spectral projections near the crossings of these eigenvalue branches with the eigenvalue branches of a model operator.

DOI : 10.4007/annals.2018.187.2.1

Luc Hillairet 1 ; Chris Judge 2

1 Université d'Orléans-CNRS, Orléans France
2 Indiana University, Bloomington, IN
@article{10_4007_annals_2018_187_2_1,
     author = {Luc Hillairet and Chris Judge},
     title = {Hyperbolic triangles without embedded eigenvalues},
     journal = {Annals of mathematics},
     pages = {301--377},
     publisher = {mathdoc},
     volume = {187},
     number = {2},
     year = {2018},
     doi = {10.4007/annals.2018.187.2.1},
     mrnumber = {3744854},
     zbl = {06841542},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2018.187.2.1/}
}
TY  - JOUR
AU  - Luc Hillairet
AU  - Chris Judge
TI  - Hyperbolic triangles without embedded eigenvalues
JO  - Annals of mathematics
PY  - 2018
SP  - 301
EP  - 377
VL  - 187
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2018.187.2.1/
DO  - 10.4007/annals.2018.187.2.1
LA  - en
ID  - 10_4007_annals_2018_187_2_1
ER  - 
%0 Journal Article
%A Luc Hillairet
%A Chris Judge
%T Hyperbolic triangles without embedded eigenvalues
%J Annals of mathematics
%D 2018
%P 301-377
%V 187
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2018.187.2.1/
%R 10.4007/annals.2018.187.2.1
%G en
%F 10_4007_annals_2018_187_2_1
Luc Hillairet; Chris Judge. Hyperbolic triangles without embedded eigenvalues. Annals of mathematics, Tome 187 (2018) no. 2, pp. 301-377. doi: 10.4007/annals.2018.187.2.1

Cité par Sources :