Voir la notice de l'article provenant de la source Annals of Mathematics website
Let $u$ be a harmonic function in the unit ball $B(0,1) \subset \mathbb{R}^n$, $n \geq 3$, such that $u(0)=0$. Nadirashvili conjectured that there exists a positive constant $c$, depending on the dimension $n$ only, such that $$H^{n-1}(\{u=0 \} \cap B) \geq c.$$ We prove Nadirashvili’s conjecture as well as its counterpart on $C^\infty$-smooth Riemannian manifolds. The latter yields the lower bound in Yau’s conjecture. Namely, we show that for any compact $C^\infty$-smooth Riemannian manifold $M$ (without boundary) of dimension $n$, there exists $c>0$ such that for any Laplace eigenfunction $\varphi_\lambda$ on $M$, which corresponds to the eigenvalue $\lambda$, the following inequality holds: $c \sqrt \lambda \leq H^{n-1}(\{\varphi_\lambda =0\})$.
@article{10_4007_annals_2018_187_1_5, author = {Alexander Logunov}, title = {Nodal sets of {Laplace} eigenfunctions: proof of {Nadirashvili{\textquoteright}s} conjecture and of the lower bound in {Yau{\textquoteright}s} conjecture}, journal = {Annals of mathematics}, pages = {241--262}, publisher = {mathdoc}, volume = {187}, number = {1}, year = {2018}, doi = {10.4007/annals.2018.187.1.5}, mrnumber = {3739232}, zbl = {06841540}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2018.187.1.5/} }
TY - JOUR AU - Alexander Logunov TI - Nodal sets of Laplace eigenfunctions: proof of Nadirashvili’s conjecture and of the lower bound in Yau’s conjecture JO - Annals of mathematics PY - 2018 SP - 241 EP - 262 VL - 187 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4007/annals.2018.187.1.5/ DO - 10.4007/annals.2018.187.1.5 LA - en ID - 10_4007_annals_2018_187_1_5 ER -
%0 Journal Article %A Alexander Logunov %T Nodal sets of Laplace eigenfunctions: proof of Nadirashvili’s conjecture and of the lower bound in Yau’s conjecture %J Annals of mathematics %D 2018 %P 241-262 %V 187 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4007/annals.2018.187.1.5/ %R 10.4007/annals.2018.187.1.5 %G en %F 10_4007_annals_2018_187_1_5
Alexander Logunov. Nodal sets of Laplace eigenfunctions: proof of Nadirashvili’s conjecture and of the lower bound in Yau’s conjecture. Annals of mathematics, Tome 187 (2018) no. 1, pp. 241-262. doi: 10.4007/annals.2018.187.1.5
Cité par Sources :