Nodal sets of Laplace eigenfunctions: proof of Nadirashvili’s conjecture and of the lower bound in Yau’s conjecture
Annals of mathematics, Tome 187 (2018) no. 1, pp. 241-262

Voir la notice de l'article provenant de la source Annals of Mathematics website

Let $u$ be a harmonic function in the unit ball $B(0,1) \subset \mathbb{R}^n$, $n \geq 3$, such that $u(0)=0$. Nadirashvili conjectured that there exists a positive constant $c$, depending on the dimension $n$ only, such that $$H^{n-1}(\{u=0 \} \cap B) \geq c.$$ We prove Nadirashvili’s conjecture as well as its counterpart on $C^\infty$-smooth Riemannian manifolds. The latter yields the lower bound in Yau’s conjecture. Namely, we show that for any compact $C^\infty$-smooth Riemannian manifold $M$ (without boundary) of dimension $n$, there exists $c>0$ such that for any Laplace eigenfunction $\varphi_\lambda$ on $M$, which corresponds to the eigenvalue $\lambda$, the following inequality holds: $c \sqrt \lambda \leq H^{n-1}(\{\varphi_\lambda =0\})$.

DOI : 10.4007/annals.2018.187.1.5

Alexander Logunov 1

1 School of Mathematical Sciences, Tel Aviv University, Tel Aviv, Israel <br/>Chebyshev Laboratory, St. Petersburg State University, Saint Petersburg, Russia</br> Institute for Advanced Study, Princeton, NJ, USA
@article{10_4007_annals_2018_187_1_5,
     author = {Alexander Logunov},
     title = {Nodal sets of {Laplace} eigenfunctions:  proof of {Nadirashvili{\textquoteright}s} conjecture and of the lower bound in {Yau{\textquoteright}s} conjecture},
     journal = {Annals of mathematics},
     pages = {241--262},
     publisher = {mathdoc},
     volume = {187},
     number = {1},
     year = {2018},
     doi = {10.4007/annals.2018.187.1.5},
     mrnumber = {3739232},
     zbl = {06841540},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2018.187.1.5/}
}
TY  - JOUR
AU  - Alexander Logunov
TI  - Nodal sets of Laplace eigenfunctions:  proof of Nadirashvili’s conjecture and of the lower bound in Yau’s conjecture
JO  - Annals of mathematics
PY  - 2018
SP  - 241
EP  - 262
VL  - 187
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2018.187.1.5/
DO  - 10.4007/annals.2018.187.1.5
LA  - en
ID  - 10_4007_annals_2018_187_1_5
ER  - 
%0 Journal Article
%A Alexander Logunov
%T Nodal sets of Laplace eigenfunctions:  proof of Nadirashvili’s conjecture and of the lower bound in Yau’s conjecture
%J Annals of mathematics
%D 2018
%P 241-262
%V 187
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2018.187.1.5/
%R 10.4007/annals.2018.187.1.5
%G en
%F 10_4007_annals_2018_187_1_5
Alexander Logunov. Nodal sets of Laplace eigenfunctions:  proof of Nadirashvili’s conjecture and of the lower bound in Yau’s conjecture. Annals of mathematics, Tome 187 (2018) no. 1, pp. 241-262. doi: 10.4007/annals.2018.187.1.5

Cité par Sources :