Nodal sets of Laplace eigenfunctions: polynomial upper estimates of the Hausdorff measure
Annals of mathematics, Tome 187 (2018) no. 1, pp. 221-239

Voir la notice de l'article provenant de la source Annals of Mathematics website

Let $\mathbb{M}$ be a compact $C^\infty$-smooth Riemannian manifold of dimension $n$, $n\geq 3$, and let $\varphi_\lambda: \Delta_M \varphi_\lambda + \lambda \varphi_\lambda = 0$ denote the Laplace eigenfunction on $\mathbb{M}$ corresponding to the eigenvalue $\lambda$. We show that $$H^{n-1}(\{ \varphi_\lambda=0\}) \leq C \lambda^{\alpha},$$ where $\alpha>1/2$ is a constant, which depends on $n$ only, and $C>0$ depends on $\mathbb{M}$ . This result is a consequence of our study of zero sets of harmonic functions on $C^\infty$-smooth Riemannian manifolds. We develop a technique of propagation of smallness for solutions of elliptic PDE that allows us to obtain local bounds from above for the volume of the nodal sets in terms of the frequency and the doubling index. % We obtain partial positive answers to the question: Is the frequency additive in some sense?

DOI : 10.4007/annals.2018.187.1.4

Alexander Logunov 1

1 School of Mathematical Sciences, Tel Aviv University, Tel Aviv, Israel<br/> Chebyshev Laboratory, St. Petersburg State University, Saint Petersburg, Russia <br/>Institute for Advanced Study, Princeton, NJ, USA
@article{10_4007_annals_2018_187_1_4,
     author = {Alexander Logunov},
     title = {Nodal sets of {Laplace} eigenfunctions: polynomial upper estimates of the {Hausdorff} measure},
     journal = {Annals of mathematics},
     pages = {221--239},
     publisher = {mathdoc},
     volume = {187},
     number = {1},
     year = {2018},
     doi = {10.4007/annals.2018.187.1.4},
     mrnumber = {3739231},
     zbl = {06841539},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2018.187.1.4/}
}
TY  - JOUR
AU  - Alexander Logunov
TI  - Nodal sets of Laplace eigenfunctions: polynomial upper estimates of the Hausdorff measure
JO  - Annals of mathematics
PY  - 2018
SP  - 221
EP  - 239
VL  - 187
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2018.187.1.4/
DO  - 10.4007/annals.2018.187.1.4
LA  - en
ID  - 10_4007_annals_2018_187_1_4
ER  - 
%0 Journal Article
%A Alexander Logunov
%T Nodal sets of Laplace eigenfunctions: polynomial upper estimates of the Hausdorff measure
%J Annals of mathematics
%D 2018
%P 221-239
%V 187
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2018.187.1.4/
%R 10.4007/annals.2018.187.1.4
%G en
%F 10_4007_annals_2018_187_1_4
Alexander Logunov. Nodal sets of Laplace eigenfunctions: polynomial upper estimates of the Hausdorff measure. Annals of mathematics, Tome 187 (2018) no. 1, pp. 221-239. doi: 10.4007/annals.2018.187.1.4

Cité par Sources :