Total Betti numbers of modules of finite projective dimension
Annals of mathematics, Tome 186 (2017) no. 2, pp. 641-646.

Voir la notice de l'article provenant de la source Annals of Mathematics website

The Buchsbaum-Eisenbud-Horrocks Conjecture predicts that the $i^{\rm th}$ Betti number $\beta_i(M)$ of a nonzero module $M$ of finite length and finite projective dimension over a local ring $R$ of dimension $d$ should be at least ${d \choose i}$. It would follow from the validity of this conjecture that $\sum_i \beta_i(M) \geq 2^{d}$. We prove the latter inequality holds in a large number of cases and that, when $R$ is a complete intersection in which $2$ is invertible, equality holds if and only if $M$ is isomorphic to the quotient of $R$ by a regular sequence of elements.
DOI : 10.4007/annals.2017.186.2.6

Mark E. Walker 1

1 University of Nebraska, Lincoln, NE
@article{10_4007_annals_2017_186_2_6,
     author = {Mark E. Walker},
     title = {Total {Betti} numbers of modules of finite projective dimension},
     journal = {Annals of mathematics},
     pages = {641--646},
     publisher = {mathdoc},
     volume = {186},
     number = {2},
     year = {2017},
     doi = {10.4007/annals.2017.186.2.6},
     mrnumber = {3702675},
     zbl = {06774115},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2017.186.2.6/}
}
TY  - JOUR
AU  - Mark E. Walker
TI  - Total Betti numbers of modules of finite projective dimension
JO  - Annals of mathematics
PY  - 2017
SP  - 641
EP  - 646
VL  - 186
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2017.186.2.6/
DO  - 10.4007/annals.2017.186.2.6
LA  - en
ID  - 10_4007_annals_2017_186_2_6
ER  - 
%0 Journal Article
%A Mark E. Walker
%T Total Betti numbers of modules of finite projective dimension
%J Annals of mathematics
%D 2017
%P 641-646
%V 186
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2017.186.2.6/
%R 10.4007/annals.2017.186.2.6
%G en
%F 10_4007_annals_2017_186_2_6
Mark E. Walker. Total Betti numbers of modules of finite projective dimension. Annals of mathematics, Tome 186 (2017) no. 2, pp. 641-646. doi : 10.4007/annals.2017.186.2.6. http://geodesic.mathdoc.fr/articles/10.4007/annals.2017.186.2.6/

Cité par Sources :