A sharp Schrödinger maximal estimate in $\mathbb {R}^2$
Annals of mathematics, Tome 186 (2017) no. 2, pp. 607-640.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We show that $\lim_{t \to 0} e^{it\Delta}f(x) = f(x)$ almost everywhere for all $f \in H^s (\mathbb{R}^2)$ provided that $s>1/3$. This result is sharp up to the endpoint. The proof uses polynomial partitioning and decoupling.
DOI : 10.4007/annals.2017.186.2.5

Xiumin Du 1 ; Larry Guth 2 ; Xiaochun Li 1

1 University of Illinois at Urbana-Champaign, Urbana IL
2 Massachusetts Institute of Technology, Cambridge, MA
@article{10_4007_annals_2017_186_2_5,
     author = {Xiumin Du and Larry Guth and Xiaochun Li},
     title = {A sharp {Schr\"odinger} maximal estimate in $\mathbb  {R}^2$},
     journal = {Annals of mathematics},
     pages = {607--640},
     publisher = {mathdoc},
     volume = {186},
     number = {2},
     year = {2017},
     doi = {10.4007/annals.2017.186.2.5},
     mrnumber = {3702674},
     zbl = {06774114},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2017.186.2.5/}
}
TY  - JOUR
AU  - Xiumin Du
AU  - Larry Guth
AU  - Xiaochun Li
TI  - A sharp Schrödinger maximal estimate in $\mathbb  {R}^2$
JO  - Annals of mathematics
PY  - 2017
SP  - 607
EP  - 640
VL  - 186
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2017.186.2.5/
DO  - 10.4007/annals.2017.186.2.5
LA  - en
ID  - 10_4007_annals_2017_186_2_5
ER  - 
%0 Journal Article
%A Xiumin Du
%A Larry Guth
%A Xiaochun Li
%T A sharp Schrödinger maximal estimate in $\mathbb  {R}^2$
%J Annals of mathematics
%D 2017
%P 607-640
%V 186
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2017.186.2.5/
%R 10.4007/annals.2017.186.2.5
%G en
%F 10_4007_annals_2017_186_2_5
Xiumin Du; Larry Guth; Xiaochun Li. A sharp Schrödinger maximal estimate in $\mathbb  {R}^2$. Annals of mathematics, Tome 186 (2017) no. 2, pp. 607-640. doi : 10.4007/annals.2017.186.2.5. http://geodesic.mathdoc.fr/articles/10.4007/annals.2017.186.2.5/

Cité par Sources :