Borel circle squaring
Annals of mathematics, Tome 186 (2017) no. 2, pp. 581-605.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We give a completely constructive solution to Tarski’s circle squaring problem. More generally, we prove a Borel version of an equidecomposition theorem due to Laczkovich. If $k \geq 1$ and $A, B \subset \mathbb{R}^k$ are bounded Borel sets with the same positive Lebesgue measure whose boundaries have upper Minkowski dimension less than $k$, then $A$ and $B$ are equidecomposable by translations using Borel pieces. This answers a question of Wagon. Our proof uses ideas from the study of flows in graphs, and a recent result of Gao, Jackson, Krohne, and Seward on special types of witnesses to the hyperfiniteness of free Borel actions of $\mathbb{Z}^d$.
DOI : 10.4007/annals.2017.186.2.4

Andrew S. Marks 1 ; Spencer T. Unger 1

1 University of California at Los Angeles, Los Angeles, CA
@article{10_4007_annals_2017_186_2_4,
     author = {Andrew S. Marks and Spencer T. Unger},
     title = {Borel circle squaring},
     journal = {Annals of mathematics},
     pages = {581--605},
     publisher = {mathdoc},
     volume = {186},
     number = {2},
     year = {2017},
     doi = {10.4007/annals.2017.186.2.4},
     mrnumber = {3702673},
     zbl = {06774113},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2017.186.2.4/}
}
TY  - JOUR
AU  - Andrew S. Marks
AU  - Spencer T. Unger
TI  - Borel circle squaring
JO  - Annals of mathematics
PY  - 2017
SP  - 581
EP  - 605
VL  - 186
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2017.186.2.4/
DO  - 10.4007/annals.2017.186.2.4
LA  - en
ID  - 10_4007_annals_2017_186_2_4
ER  - 
%0 Journal Article
%A Andrew S. Marks
%A Spencer T. Unger
%T Borel circle squaring
%J Annals of mathematics
%D 2017
%P 581-605
%V 186
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2017.186.2.4/
%R 10.4007/annals.2017.186.2.4
%G en
%F 10_4007_annals_2017_186_2_4
Andrew S. Marks; Spencer T. Unger. Borel circle squaring. Annals of mathematics, Tome 186 (2017) no. 2, pp. 581-605. doi : 10.4007/annals.2017.186.2.4. http://geodesic.mathdoc.fr/articles/10.4007/annals.2017.186.2.4/

Cité par Sources :