Let $X$ be a connected scheme, smooth and separated over an algebraically closed field $k$ of characteristic $p\geq 0$, let $f:Y\rightarrow X$ be a smooth proper morphism and $x$ a geometric point on $X$. We prove that the tensor invariants of bounded length $\leq d$ of $\pi_1(X,x)$ acting on the étale cohomology groups $H^*(Y_x,\mathbb{F}_\ell)$ are the reduction modulo-$\ell$ of those of $\pi_1(X,x)$ acting on $H^*(Y_x,\mathbb{Z}_\ell)$ for $\ell $ greater than a constant depending only on $f:Y\rightarrow X$, $d$. We apply this result to show that the geometric variant with $\mathbb{F}_\ell$-coefficients of the Grothendieck-Serre semisimplicity conjecture — namely, that $\pi_1(X,x)$ acts semisimply on $H^*(Y_x,\mathbb{F}_\ell)$ for $\ell\gg 0$ — is equivalent to the condition that the image of $\pi_1(X,x)$ acting on $H^*(Y_x,\mathbb{Q}_\ell)$ is `almost maximal’ (in a precise sense; what we call `almost hyperspecial’) with respect to the group of $\mathbb{Q}_\ell$-points of its Zariski closure. Ultimately, we prove the geometric variant with $\mathbb{F}_\ell$-coefficients of the Grothendieck-Serre semisimplicity conjecture.
Anna Cadoret 1 ; Chun-Yin Hui 2 ; Akio Tamagawa 3
@article{10_4007_annals_2017_186_1_5,
author = {Anna Cadoret and Chun-Yin Hui and Akio Tamagawa},
title = {Geometric monodromy {\textemdash} semisimplicity and maximality},
journal = {Annals of mathematics},
pages = {205--236},
year = {2017},
volume = {186},
number = {1},
doi = {10.4007/annals.2017.186.1.5},
mrnumber = {3665003},
zbl = {06751221},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2017.186.1.5/}
}
TY - JOUR AU - Anna Cadoret AU - Chun-Yin Hui AU - Akio Tamagawa TI - Geometric monodromy — semisimplicity and maximality JO - Annals of mathematics PY - 2017 SP - 205 EP - 236 VL - 186 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4007/annals.2017.186.1.5/ DO - 10.4007/annals.2017.186.1.5 LA - en ID - 10_4007_annals_2017_186_1_5 ER -
%0 Journal Article %A Anna Cadoret %A Chun-Yin Hui %A Akio Tamagawa %T Geometric monodromy — semisimplicity and maximality %J Annals of mathematics %D 2017 %P 205-236 %V 186 %N 1 %U http://geodesic.mathdoc.fr/articles/10.4007/annals.2017.186.1.5/ %R 10.4007/annals.2017.186.1.5 %G en %F 10_4007_annals_2017_186_1_5
Anna Cadoret; Chun-Yin Hui; Akio Tamagawa. Geometric monodromy — semisimplicity and maximality. Annals of mathematics, Tome 186 (2017) no. 1, pp. 205-236. doi: 10.4007/annals.2017.186.1.5
Cité par Sources :