Geometric monodromy — semisimplicity and maximality
Annals of mathematics, Tome 186 (2017) no. 1, pp. 205-236 Cet article a éte moissonné depuis la source Annals of Mathematics website

Voir la notice de l'article

Let $X$ be a connected scheme, smooth and separated over an algebraically closed field $k$ of characteristic $p\geq 0$, let $f:Y\rightarrow X$ be a smooth proper morphism and $x$ a geometric point on $X$. We prove that the tensor invariants of bounded length $\leq d$ of $\pi_1(X,x)$ acting on the étale cohomology groups $H^*(Y_x,\mathbb{F}_\ell)$ are the reduction modulo-$\ell$ of those of $\pi_1(X,x)$ acting on $H^*(Y_x,\mathbb{Z}_\ell)$ for $\ell $ greater than a constant depending only on $f:Y\rightarrow X$, $d$. We apply this result to show that the geometric variant with $\mathbb{F}_\ell$-coefficients of the Grothendieck-Serre semisimplicity conjecture — namely, that $\pi_1(X,x)$ acts semisimply on $H^*(Y_x,\mathbb{F}_\ell)$ for $\ell\gg 0$ — is equivalent to the condition that the image of $\pi_1(X,x)$ acting on $H^*(Y_x,\mathbb{Q}_\ell)$ is `almost maximal’ (in a precise sense; what we call `almost hyperspecial’) with respect to the group of $\mathbb{Q}_\ell$-points of its Zariski closure. Ultimately, we prove the geometric variant with $\mathbb{F}_\ell$-coefficients of the Grothendieck-Serre semisimplicity conjecture.

DOI : 10.4007/annals.2017.186.1.5

Anna Cadoret 1 ; Chun-Yin Hui 2 ; Akio Tamagawa 3

1 Centre de Mathématiques Laurent Schwartz (UMR 7640), Ecole Polytechnique, 91128 Palaiseau, France
2 VU University Amsterdam, De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands
3 Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan
@article{10_4007_annals_2017_186_1_5,
     author = {Anna Cadoret and Chun-Yin Hui and Akio Tamagawa},
     title = {Geometric monodromy  {\textemdash}  semisimplicity and maximality},
     journal = {Annals of mathematics},
     pages = {205--236},
     year = {2017},
     volume = {186},
     number = {1},
     doi = {10.4007/annals.2017.186.1.5},
     mrnumber = {3665003},
     zbl = {06751221},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2017.186.1.5/}
}
TY  - JOUR
AU  - Anna Cadoret
AU  - Chun-Yin Hui
AU  - Akio Tamagawa
TI  - Geometric monodromy  —  semisimplicity and maximality
JO  - Annals of mathematics
PY  - 2017
SP  - 205
EP  - 236
VL  - 186
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2017.186.1.5/
DO  - 10.4007/annals.2017.186.1.5
LA  - en
ID  - 10_4007_annals_2017_186_1_5
ER  - 
%0 Journal Article
%A Anna Cadoret
%A Chun-Yin Hui
%A Akio Tamagawa
%T Geometric monodromy  —  semisimplicity and maximality
%J Annals of mathematics
%D 2017
%P 205-236
%V 186
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2017.186.1.5/
%R 10.4007/annals.2017.186.1.5
%G en
%F 10_4007_annals_2017_186_1_5
Anna Cadoret; Chun-Yin Hui; Akio Tamagawa. Geometric monodromy  —  semisimplicity and maximality. Annals of mathematics, Tome 186 (2017) no. 1, pp. 205-236. doi: 10.4007/annals.2017.186.1.5

Cité par Sources :