Chern’s conjecture for special affine manifolds
Annals of mathematics, Tome 186 (2017) no. 1, pp. 69-95.

Voir la notice de l'article provenant de la source Annals of Mathematics website

An affine manifold $X$ in the sense of differential geometry is a differentiable manifold admitting an atlas of charts with value in an affine space, with locally constant affine change of coordinates. Equivalently, it is a manifold whose tangent bundle admits a flat torsion free connection. Around 1955 Chern conjectured that the Euler characteristic of any compact affine manifold has to vanish. In this paper we prove Chern’s conjecture in the case where $X$ moreover admits a parallel volume form.
DOI : 10.4007/annals.2017.186.1.2

Bruno Klingler 1

1 Institut de Mathématiques de Jussieu, Paris, France and Institut Universitaire de France, Paris, France
@article{10_4007_annals_2017_186_1_2,
     author = {Bruno Klingler},
     title = {Chern{\textquoteright}s conjecture for special affine manifolds},
     journal = {Annals of mathematics},
     pages = {69--95},
     publisher = {mathdoc},
     volume = {186},
     number = {1},
     year = {2017},
     doi = {10.4007/annals.2017.186.1.2},
     mrnumber = {3665000},
     zbl = {06751218},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2017.186.1.2/}
}
TY  - JOUR
AU  - Bruno Klingler
TI  - Chern’s conjecture for special affine manifolds
JO  - Annals of mathematics
PY  - 2017
SP  - 69
EP  - 95
VL  - 186
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2017.186.1.2/
DO  - 10.4007/annals.2017.186.1.2
LA  - en
ID  - 10_4007_annals_2017_186_1_2
ER  - 
%0 Journal Article
%A Bruno Klingler
%T Chern’s conjecture for special affine manifolds
%J Annals of mathematics
%D 2017
%P 69-95
%V 186
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2017.186.1.2/
%R 10.4007/annals.2017.186.1.2
%G en
%F 10_4007_annals_2017_186_1_2
Bruno Klingler. Chern’s conjecture for special affine manifolds. Annals of mathematics, Tome 186 (2017) no. 1, pp. 69-95. doi : 10.4007/annals.2017.186.1.2. http://geodesic.mathdoc.fr/articles/10.4007/annals.2017.186.1.2/

Cité par Sources :