The Apollonian structure of integer superharmonic matrices
Annals of mathematics, Tome 186 (2017) no. 1, pp. 1-67.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We prove that the set of quadratic growths attainable by integer-valued superharmonic functions on the lattice $\mathbb{Z}^2$ has the structure of an Apollonian circle packing. This completely characterizes the PDE that determines the continuum scaling limit of the Abelian sandpile on the lattice $\mathbb{Z}^2$.
DOI : 10.4007/annals.2017.186.1.1

Lionel Levine 1 ; Wesley Pegden 2 ; Charles K. Smart 3

1 Cornell University, Ithaca, NY
2 Carnegie Mellon University, Pittsburgh, PA
3 The University of Chicago, Chicago, IL
@article{10_4007_annals_2017_186_1_1,
     author = {Lionel Levine and Wesley Pegden and Charles K. Smart},
     title = {The {Apollonian} structure of integer superharmonic matrices},
     journal = {Annals of mathematics},
     pages = {1--67},
     publisher = {mathdoc},
     volume = {186},
     number = {1},
     year = {2017},
     doi = {10.4007/annals.2017.186.1.1},
     mrnumber = {3664999},
     zbl = {06751217},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2017.186.1.1/}
}
TY  - JOUR
AU  - Lionel Levine
AU  - Wesley Pegden
AU  - Charles K. Smart
TI  - The Apollonian structure of integer superharmonic matrices
JO  - Annals of mathematics
PY  - 2017
SP  - 1
EP  - 67
VL  - 186
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2017.186.1.1/
DO  - 10.4007/annals.2017.186.1.1
LA  - en
ID  - 10_4007_annals_2017_186_1_1
ER  - 
%0 Journal Article
%A Lionel Levine
%A Wesley Pegden
%A Charles K. Smart
%T The Apollonian structure of integer superharmonic matrices
%J Annals of mathematics
%D 2017
%P 1-67
%V 186
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2017.186.1.1/
%R 10.4007/annals.2017.186.1.1
%G en
%F 10_4007_annals_2017_186_1_1
Lionel Levine; Wesley Pegden; Charles K. Smart. The Apollonian structure of integer superharmonic matrices. Annals of mathematics, Tome 186 (2017) no. 1, pp. 1-67. doi : 10.4007/annals.2017.186.1.1. http://geodesic.mathdoc.fr/articles/10.4007/annals.2017.186.1.1/

Cité par Sources :