Higher ramification and the local Langlands correspondence
Annals of mathematics, Tome 185 (2017) no. 3, pp. 919-955.

Voir la notice de l'article provenant de la source Annals of Mathematics website

Let $F$ be a non-Archimedean locally compact field. We show that the local Langlands correspondence over $F$ has a property generalizing the higher ramification theorem of local class field theory. If $\pi$ is an irreducible cuspidal representation of a general linear group ${\rm GL}_n(F)$ and $\sigma$ the corresponding irreducible representation of the Weil group $\mathcal{W}_F$ of $F$, the restriction of $\sigma$ to a ramification subgroup of $\mathcal{W}_F$ is determined by a truncation of the simple character $\theta_\pi$ contained in $\pi$, and conversely. Numerical aspects of the relation are governed by an Herbrand-like function $\Psi_\varTheta$ depending on the endo-class $\varTheta$ of $\theta_\pi$. We give a method for calculating $\Psi_\varTheta$ directly from $\varTheta$. Consequently, the ramification-theoretic structure of $\sigma$ can be predicted from the simple character $\theta_\pi$ alone.
DOI : 10.4007/annals.2017.185.3.5

Colin J. Bushnell 1 ; Guy Henniart 2

1 King's College London, Department of Mathematics, Strand, London WC2R 2LS, UK
2 Laboratoire de Mathématiques d'Orsay, Université Paris-Sud, CNRS, Université Paris-Saclay, 91405 Orsay, France
@article{10_4007_annals_2017_185_3_5,
     author = {Colin J. Bushnell and Guy Henniart},
     title = {Higher ramification and the local {Langlands} correspondence},
     journal = {Annals of mathematics},
     pages = {919--955},
     publisher = {mathdoc},
     volume = {185},
     number = {3},
     year = {2017},
     doi = {10.4007/annals.2017.185.3.5},
     mrnumber = {3664814},
     zbl = {06731861},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2017.185.3.5/}
}
TY  - JOUR
AU  - Colin J. Bushnell
AU  - Guy Henniart
TI  - Higher ramification and the local Langlands correspondence
JO  - Annals of mathematics
PY  - 2017
SP  - 919
EP  - 955
VL  - 185
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2017.185.3.5/
DO  - 10.4007/annals.2017.185.3.5
LA  - en
ID  - 10_4007_annals_2017_185_3_5
ER  - 
%0 Journal Article
%A Colin J. Bushnell
%A Guy Henniart
%T Higher ramification and the local Langlands correspondence
%J Annals of mathematics
%D 2017
%P 919-955
%V 185
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2017.185.3.5/
%R 10.4007/annals.2017.185.3.5
%G en
%F 10_4007_annals_2017_185_3_5
Colin J. Bushnell; Guy Henniart. Higher ramification and the local Langlands correspondence. Annals of mathematics, Tome 185 (2017) no. 3, pp. 919-955. doi : 10.4007/annals.2017.185.3.5. http://geodesic.mathdoc.fr/articles/10.4007/annals.2017.185.3.5/

Cité par Sources :