Harmonic quasi-isometric maps between rank one symmetric spaces
Annals of mathematics, Tome 185 (2017) no. 3, pp. 895-917.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We prove that a quasi-isometric map between rank one symmetric spaces is within bounded distance from a unique harmonic map. In particular, this completes the proof of the Schoen-Li-Wang conjecture.
DOI : 10.4007/annals.2017.185.3.4

Yves Benoist 1 ; Dominique Hulin 2

1 CNRS & Université Paris-Sud, Orsay, France
2 Université Paris-Sud, Orsay, France
@article{10_4007_annals_2017_185_3_4,
     author = {Yves Benoist and Dominique Hulin},
     title = {Harmonic quasi-isometric  maps between rank one symmetric spaces},
     journal = {Annals of mathematics},
     pages = {895--917},
     publisher = {mathdoc},
     volume = {185},
     number = {3},
     year = {2017},
     doi = {10.4007/annals.2017.185.3.4},
     mrnumber = {3664813},
     zbl = {06731860},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2017.185.3.4/}
}
TY  - JOUR
AU  - Yves Benoist
AU  - Dominique Hulin
TI  - Harmonic quasi-isometric  maps between rank one symmetric spaces
JO  - Annals of mathematics
PY  - 2017
SP  - 895
EP  - 917
VL  - 185
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2017.185.3.4/
DO  - 10.4007/annals.2017.185.3.4
LA  - en
ID  - 10_4007_annals_2017_185_3_4
ER  - 
%0 Journal Article
%A Yves Benoist
%A Dominique Hulin
%T Harmonic quasi-isometric  maps between rank one symmetric spaces
%J Annals of mathematics
%D 2017
%P 895-917
%V 185
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2017.185.3.4/
%R 10.4007/annals.2017.185.3.4
%G en
%F 10_4007_annals_2017_185_3_4
Yves Benoist; Dominique Hulin. Harmonic quasi-isometric  maps between rank one symmetric spaces. Annals of mathematics, Tome 185 (2017) no. 3, pp. 895-917. doi : 10.4007/annals.2017.185.3.4. http://geodesic.mathdoc.fr/articles/10.4007/annals.2017.185.3.4/

Cité par Sources :