Global well-posedness for the Yang-Mills equation in $4+1$ dimensions. Small energy
Annals of mathematics, Tome 185 (2017) no. 3, pp. 831-893.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We consider the hyperbolic Yang-Mills equation on the Minkowski space $\mathbb{R}^{4+1}$. Our main result asserts that this problem is globally well-posed for all initial data whose energy is sufficiently small. This solves a longstanding open problem.
DOI : 10.4007/annals.2017.185.3.3

Joachim Krieger 1 ; Daniel Tataru 2

1 École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
2 The University of California at Berkeley, Berkeley, CA
@article{10_4007_annals_2017_185_3_3,
     author = {Joachim Krieger and Daniel Tataru},
     title = {Global well-posedness for the {Yang-Mills} equation in $4+1$ dimensions. {Small} energy},
     journal = {Annals of mathematics},
     pages = {831--893},
     publisher = {mathdoc},
     volume = {185},
     number = {3},
     year = {2017},
     doi = {10.4007/annals.2017.185.3.3},
     mrnumber = {3664812},
     zbl = {06731859},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2017.185.3.3/}
}
TY  - JOUR
AU  - Joachim Krieger
AU  - Daniel Tataru
TI  - Global well-posedness for the Yang-Mills equation in $4+1$ dimensions. Small energy
JO  - Annals of mathematics
PY  - 2017
SP  - 831
EP  - 893
VL  - 185
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2017.185.3.3/
DO  - 10.4007/annals.2017.185.3.3
LA  - en
ID  - 10_4007_annals_2017_185_3_3
ER  - 
%0 Journal Article
%A Joachim Krieger
%A Daniel Tataru
%T Global well-posedness for the Yang-Mills equation in $4+1$ dimensions. Small energy
%J Annals of mathematics
%D 2017
%P 831-893
%V 185
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2017.185.3.3/
%R 10.4007/annals.2017.185.3.3
%G en
%F 10_4007_annals_2017_185_3_3
Joachim Krieger; Daniel Tataru. Global well-posedness for the Yang-Mills equation in $4+1$ dimensions. Small energy. Annals of mathematics, Tome 185 (2017) no. 3, pp. 831-893. doi : 10.4007/annals.2017.185.3.3. http://geodesic.mathdoc.fr/articles/10.4007/annals.2017.185.3.3/

Cité par Sources :