Ramsey numbers of degenerate graphs
Annals of mathematics, Tome 185 (2017) no. 3, pp. 791-829.

Voir la notice de l'article provenant de la source Annals of Mathematics website

A graph is $d$-degenerate if all its subgraphs have a vertex of degree at most $d$. We prove that there exists a constant $c$ such that for all natural numbers $d$ and $r$, every $d$-degenerate graph $H$ of chromatic number $r$ with $|V(H)| \ge 2^{d^22^{cr}}$ has Ramsey number at most $2^{d2^{cr}} |V(H)|$. This solves a conjecture of Burr and Erdős from 1973.
DOI : 10.4007/annals.2017.185.3.2

Choongbum Lee 1

1 Massachusetts Institute of Technology, Cambridge, MA
@article{10_4007_annals_2017_185_3_2,
     author = {Choongbum Lee},
     title = {Ramsey numbers of degenerate graphs},
     journal = {Annals of mathematics},
     pages = {791--829},
     publisher = {mathdoc},
     volume = {185},
     number = {3},
     year = {2017},
     doi = {10.4007/annals.2017.185.3.2},
     mrnumber = {3664811},
     zbl = {1365.05193},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2017.185.3.2/}
}
TY  - JOUR
AU  - Choongbum Lee
TI  - Ramsey numbers of degenerate graphs
JO  - Annals of mathematics
PY  - 2017
SP  - 791
EP  - 829
VL  - 185
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2017.185.3.2/
DO  - 10.4007/annals.2017.185.3.2
LA  - en
ID  - 10_4007_annals_2017_185_3_2
ER  - 
%0 Journal Article
%A Choongbum Lee
%T Ramsey numbers of degenerate graphs
%J Annals of mathematics
%D 2017
%P 791-829
%V 185
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2017.185.3.2/
%R 10.4007/annals.2017.185.3.2
%G en
%F 10_4007_annals_2017_185_3_2
Choongbum Lee. Ramsey numbers of degenerate graphs. Annals of mathematics, Tome 185 (2017) no. 3, pp. 791-829. doi : 10.4007/annals.2017.185.3.2. http://geodesic.mathdoc.fr/articles/10.4007/annals.2017.185.3.2/

Cité par Sources :