On the growth of $L^2$-invariants for sequences of lattices in Lie groups
Annals of mathematics, Tome 185 (2017) no. 3, pp. 711-790.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We study the asymptotic behaviour of Betti numbers, twisted torsion and other spectral invariants of sequences of locally symmetric spaces. Our main results are uniform versions of the DeGeorge–Wallach Theorem, of a theorem of Delorme and various other limit multiplicity theorems.
DOI : 10.4007/annals.2017.185.3.1

Miklos Abert 1 ; Nicolas Bergeron 2 ; Ian Biringer 3 ; Tsachik Gelander 4 ; Nikolay Nikolov 5 ; Jean Raimbault 6 ; Iddo Samet 

1 MTA Alfréd Rényi Institute of Mathematics, Budapest, Hungary
2 Sorbonne Universités UPMC Université Paris 06, Institut de Mathématiques de Jussieu-Paris Rive Gauche, UMR 7586 CNRS, Université Paris Diderot, Sorbonne Paris Cité FR-75005 Paris
3 Boston College, Chestnut Hill, MA
4 Faculty of Mathematics and Computer Science, The Weizmann Institute of Science, Rehovot 76100, Israel
5 University College, Oxford, OX1 4BH, United Kingdom
6 Institut de Mathématiques de Toulouse, UMR5219 Université de Toulouse, CNRS, UPS IMT, Toulouse, France
@article{10_4007_annals_2017_185_3_1,
     author = {Miklos Abert and Nicolas Bergeron and Ian Biringer and Tsachik Gelander and Nikolay Nikolov and Jean Raimbault and Iddo Samet},
     title = {On the growth of $L^2$-invariants for sequences of lattices in {Lie} groups},
     journal = {Annals of mathematics},
     pages = {711--790},
     publisher = {mathdoc},
     volume = {185},
     number = {3},
     year = {2017},
     doi = {10.4007/annals.2017.185.3.1},
     mrnumber = {3664810},
     zbl = {06731857},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2017.185.3.1/}
}
TY  - JOUR
AU  - Miklos Abert
AU  - Nicolas Bergeron
AU  - Ian Biringer
AU  - Tsachik Gelander
AU  - Nikolay Nikolov
AU  - Jean Raimbault
AU  - Iddo Samet
TI  - On the growth of $L^2$-invariants for sequences of lattices in Lie groups
JO  - Annals of mathematics
PY  - 2017
SP  - 711
EP  - 790
VL  - 185
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2017.185.3.1/
DO  - 10.4007/annals.2017.185.3.1
LA  - en
ID  - 10_4007_annals_2017_185_3_1
ER  - 
%0 Journal Article
%A Miklos Abert
%A Nicolas Bergeron
%A Ian Biringer
%A Tsachik Gelander
%A Nikolay Nikolov
%A Jean Raimbault
%A Iddo Samet
%T On the growth of $L^2$-invariants for sequences of lattices in Lie groups
%J Annals of mathematics
%D 2017
%P 711-790
%V 185
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2017.185.3.1/
%R 10.4007/annals.2017.185.3.1
%G en
%F 10_4007_annals_2017_185_3_1
Miklos Abert; Nicolas Bergeron; Ian Biringer; Tsachik Gelander; Nikolay Nikolov; Jean Raimbault; Iddo Samet. On the growth of $L^2$-invariants for sequences of lattices in Lie groups. Annals of mathematics, Tome 185 (2017) no. 3, pp. 711-790. doi : 10.4007/annals.2017.185.3.1. http://geodesic.mathdoc.fr/articles/10.4007/annals.2017.185.3.1/

Cité par Sources :