Measurable circle squaring
Annals of mathematics, Tome 185 (2017) no. 2, pp. 671-710.

Voir la notice de l'article provenant de la source Annals of Mathematics website

Laczkovich proved that if bounded subsets $A$ and $B$ of $\mathbb{R}^k$ have the same nonzero Lebesgue measure and the upper box dimension of the boundary of each set is less than $k$, then there is a partition of $A$ into finitely many parts that can be translated to form a partition of $B$. Here we show that it can be additionally required that each part is both Baire and Lebesgue measurable. As special cases, this gives measurable and translation-only versions of Tarski’s circle squaring and Hilbert’s third problem.
DOI : 10.4007/annals.2017.185.2.6

Łukasz Grabowski 1 ; András Máthé 2 ; Oleg Pikhurko 3

1 Department of Mathematics and Statistics, Lancaster University, Lancaster, United Kingdom
2 Mathematics Institute, University of Warwick, Coventry, United Kingdom
3 Mathematics Institute and DIMAP, University of Warwick, Coventry, United Kingdom
@article{10_4007_annals_2017_185_2_6,
     author = {{\L}ukasz Grabowski and Andr\'as M\'ath\'e and Oleg Pikhurko},
     title = {Measurable circle squaring},
     journal = {Annals of mathematics},
     pages = {671--710},
     publisher = {mathdoc},
     volume = {185},
     number = {2},
     year = {2017},
     doi = {10.4007/annals.2017.185.2.6},
     mrnumber = {3612006},
     zbl = {06701141},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2017.185.2.6/}
}
TY  - JOUR
AU  - Łukasz Grabowski
AU  - András Máthé
AU  - Oleg Pikhurko
TI  - Measurable circle squaring
JO  - Annals of mathematics
PY  - 2017
SP  - 671
EP  - 710
VL  - 185
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2017.185.2.6/
DO  - 10.4007/annals.2017.185.2.6
LA  - en
ID  - 10_4007_annals_2017_185_2_6
ER  - 
%0 Journal Article
%A Łukasz Grabowski
%A András Máthé
%A Oleg Pikhurko
%T Measurable circle squaring
%J Annals of mathematics
%D 2017
%P 671-710
%V 185
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2017.185.2.6/
%R 10.4007/annals.2017.185.2.6
%G en
%F 10_4007_annals_2017_185_2_6
Łukasz Grabowski; András Máthé; Oleg Pikhurko. Measurable circle squaring. Annals of mathematics, Tome 185 (2017) no. 2, pp. 671-710. doi : 10.4007/annals.2017.185.2.6. http://geodesic.mathdoc.fr/articles/10.4007/annals.2017.185.2.6/

Cité par Sources :