We study Sobolev regularity disturbances to the periodic, plane Couette flow in the 3D incompressible Navier-Stokes equations at high Reynolds number \textbfRe. Our goal is to estimate how the stability threshold scales in $\textbf{Re}$: the largest the initial perturbation can be while still resulting in a solution that does not transition away from Couette flow. In this work we prove that initial data that satisfies $\|u_{\rm in}\|_{H^\sigma} \leq \delta\textbf{Re}^{-3/2}$ for any $\sigma > 9/2$ and some $\delta = \delta(\sigma) > 0$ depending only on $\sigma$ is global in time, remains within $O(\textbf{Re}^{-1/2})$ of the Couette flow in $L^2$ for all time, and converges to the class of “2.5-dimensional” streamwise-independent solutions referred to as streaks for times $t \gtrsim \textbf{Re}^{1/3}$. Numerical experiments performed by Reddy et. al. with “rough” initial data estimated a threshold of $\sim \textbf{Re}^{-31/20}$, which shows very close agreement with our estimate.
Jacob Bedrossian 1 ; Pierre Germain 2 ; Nader Masmoudi 2
@article{10_4007_annals_2017_185_2_4,
author = {Jacob Bedrossian and Pierre Germain and Nader Masmoudi},
title = {On the stability threshold for the {3D} {Couette} flow in {Sobolev} regularity},
journal = {Annals of mathematics},
pages = {541--608},
year = {2017},
volume = {185},
number = {2},
doi = {10.4007/annals.2017.185.2.4},
mrnumber = {3612004},
zbl = {06701139},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2017.185.2.4/}
}
TY - JOUR AU - Jacob Bedrossian AU - Pierre Germain AU - Nader Masmoudi TI - On the stability threshold for the 3D Couette flow in Sobolev regularity JO - Annals of mathematics PY - 2017 SP - 541 EP - 608 VL - 185 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4007/annals.2017.185.2.4/ DO - 10.4007/annals.2017.185.2.4 LA - en ID - 10_4007_annals_2017_185_2_4 ER -
%0 Journal Article %A Jacob Bedrossian %A Pierre Germain %A Nader Masmoudi %T On the stability threshold for the 3D Couette flow in Sobolev regularity %J Annals of mathematics %D 2017 %P 541-608 %V 185 %N 2 %U http://geodesic.mathdoc.fr/articles/10.4007/annals.2017.185.2.4/ %R 10.4007/annals.2017.185.2.4 %G en %F 10_4007_annals_2017_185_2_4
Jacob Bedrossian; Pierre Germain; Nader Masmoudi. On the stability threshold for the 3D Couette flow in Sobolev regularity. Annals of mathematics, Tome 185 (2017) no. 2, pp. 541-608. doi: 10.4007/annals.2017.185.2.4
Cité par Sources :