On the stability threshold for the 3D Couette flow in Sobolev regularity
Annals of mathematics, Tome 185 (2017) no. 2, pp. 541-608 Cet article a éte moissonné depuis la source Annals of Mathematics website

Voir la notice de l'article

We study Sobolev regularity disturbances to the periodic, plane Couette flow in the 3D incompressible Navier-Stokes equations at high Reynolds number \textbfRe. Our goal is to estimate how the stability threshold scales in $\textbf{Re}$: the largest the initial perturbation can be while still resulting in a solution that does not transition away from Couette flow. In this work we prove that initial data that satisfies $\|u_{\rm in}\|_{H^\sigma} \leq \delta\textbf{Re}^{-3/2}$ for any $\sigma > 9/2$ and some $\delta = \delta(\sigma) > 0$ depending only on $\sigma$ is global in time, remains within $O(\textbf{Re}^{-1/2})$ of the Couette flow in $L^2$ for all time, and converges to the class of “2.5-dimensional” streamwise-independent solutions referred to as streaks for times $t \gtrsim \textbf{Re}^{1/3}$. Numerical experiments performed by Reddy et. al. with “rough” initial data estimated a threshold of $\sim \textbf{Re}^{-31/20}$, which shows very close agreement with our estimate.

DOI : 10.4007/annals.2017.185.2.4

Jacob Bedrossian 1 ; Pierre Germain 2 ; Nader Masmoudi 2

1 University of Maryland, College Park, MD
2 Courant Institute of Mathematical Sciences, New York University, New York, NY
@article{10_4007_annals_2017_185_2_4,
     author = {Jacob Bedrossian and Pierre Germain and Nader Masmoudi},
     title = {On the stability threshold for the {3D} {Couette} flow in {Sobolev} regularity},
     journal = {Annals of mathematics},
     pages = {541--608},
     year = {2017},
     volume = {185},
     number = {2},
     doi = {10.4007/annals.2017.185.2.4},
     mrnumber = {3612004},
     zbl = {06701139},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2017.185.2.4/}
}
TY  - JOUR
AU  - Jacob Bedrossian
AU  - Pierre Germain
AU  - Nader Masmoudi
TI  - On the stability threshold for the 3D Couette flow in Sobolev regularity
JO  - Annals of mathematics
PY  - 2017
SP  - 541
EP  - 608
VL  - 185
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2017.185.2.4/
DO  - 10.4007/annals.2017.185.2.4
LA  - en
ID  - 10_4007_annals_2017_185_2_4
ER  - 
%0 Journal Article
%A Jacob Bedrossian
%A Pierre Germain
%A Nader Masmoudi
%T On the stability threshold for the 3D Couette flow in Sobolev regularity
%J Annals of mathematics
%D 2017
%P 541-608
%V 185
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2017.185.2.4/
%R 10.4007/annals.2017.185.2.4
%G en
%F 10_4007_annals_2017_185_2_4
Jacob Bedrossian; Pierre Germain; Nader Masmoudi. On the stability threshold for the 3D Couette flow in Sobolev regularity. Annals of mathematics, Tome 185 (2017) no. 2, pp. 541-608. doi: 10.4007/annals.2017.185.2.4

Cité par Sources :