Maximal representations of uniform complex hyperbolic lattices
Annals of mathematics, Tome 185 (2017) no. 2, pp. 493-540.

Voir la notice de l'article provenant de la source Annals of Mathematics website

Let $\rho$ be a maximal representation of a uniform lattice $\Gamma\subset\mathrm{SU}(n,1)$, $n\geq 2$, in a classical Lie group of Hermitian type $G$. We prove that necessarily $G=\mathrm{SU}(p,q)$ with $p\geq qn$ and there exists a holomorphic or antiholomorphic $\rho$-equivariant map from the complex hyperbolic $n$-space to the symmetric space associated to $\mathrm{SU}(p,q)$. This map is moreover a totally geodesic homothetic embedding. In particular, up to a representation in a compact subgroup of $\mathrm{SU}(p,q)$, the representation $\rho$ extends to a representation of $\mathrm{SU}(n,1)$ in $\mathrm{SU}(p,q)$.
DOI : 10.4007/annals.2017.185.2.3

Vincent Koziarz 1 ; Julien Maubon 2

1 Univ. Bordeaux, IMB, CNRS, UMR 5251, F-33400 Talence, France
2 Université de Lorraine, CNRS, Institut Élie Cartan de Lorraine, UMR 7502, Vandœuvre-lès-Nancy, F-54506, France
@article{10_4007_annals_2017_185_2_3,
     author = {Vincent Koziarz and Julien Maubon},
     title = {Maximal representations of uniform complex hyperbolic lattices},
     journal = {Annals of mathematics},
     pages = {493--540},
     publisher = {mathdoc},
     volume = {185},
     number = {2},
     year = {2017},
     doi = {10.4007/annals.2017.185.2.3},
     mrnumber = {3612003},
     zbl = {06701138},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2017.185.2.3/}
}
TY  - JOUR
AU  - Vincent Koziarz
AU  - Julien Maubon
TI  - Maximal representations of uniform complex hyperbolic lattices
JO  - Annals of mathematics
PY  - 2017
SP  - 493
EP  - 540
VL  - 185
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2017.185.2.3/
DO  - 10.4007/annals.2017.185.2.3
LA  - en
ID  - 10_4007_annals_2017_185_2_3
ER  - 
%0 Journal Article
%A Vincent Koziarz
%A Julien Maubon
%T Maximal representations of uniform complex hyperbolic lattices
%J Annals of mathematics
%D 2017
%P 493-540
%V 185
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2017.185.2.3/
%R 10.4007/annals.2017.185.2.3
%G en
%F 10_4007_annals_2017_185_2_3
Vincent Koziarz; Julien Maubon. Maximal representations of uniform complex hyperbolic lattices. Annals of mathematics, Tome 185 (2017) no. 2, pp. 493-540. doi : 10.4007/annals.2017.185.2.3. http://geodesic.mathdoc.fr/articles/10.4007/annals.2017.185.2.3/

Cité par Sources :