Affine Grassmannians and the geometric Satake in mixed characteristic
Annals of mathematics, Tome 185 (2017) no. 2, pp. 403-492.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We endow the set of lattices in $\mathbb{Q}_p^n$ with a reasonable algebro-geometric structure. As a result, we prove the representability of affine Grassmannians and establish the geometric Satake equivalence in mixed characteristic. We also give an application of our theory to the study of Rapoport-Zink spaces.
DOI : 10.4007/annals.2017.185.2.2

Xinwen Zhu 1

1 California Institute of Technology, Pasadena, CA
@article{10_4007_annals_2017_185_2_2,
     author = {Xinwen Zhu},
     title = {Affine {Grassmannians} and the geometric {Satake} in mixed characteristic},
     journal = {Annals of mathematics},
     pages = {403--492},
     publisher = {mathdoc},
     volume = {185},
     number = {2},
     year = {2017},
     doi = {10.4007/annals.2017.185.2.2},
     mrnumber = {3612002},
     zbl = {06701137},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2017.185.2.2/}
}
TY  - JOUR
AU  - Xinwen Zhu
TI  - Affine Grassmannians and the geometric Satake in mixed characteristic
JO  - Annals of mathematics
PY  - 2017
SP  - 403
EP  - 492
VL  - 185
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2017.185.2.2/
DO  - 10.4007/annals.2017.185.2.2
LA  - en
ID  - 10_4007_annals_2017_185_2_2
ER  - 
%0 Journal Article
%A Xinwen Zhu
%T Affine Grassmannians and the geometric Satake in mixed characteristic
%J Annals of mathematics
%D 2017
%P 403-492
%V 185
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2017.185.2.2/
%R 10.4007/annals.2017.185.2.2
%G en
%F 10_4007_annals_2017_185_2_2
Xinwen Zhu. Affine Grassmannians and the geometric Satake in mixed characteristic. Annals of mathematics, Tome 185 (2017) no. 2, pp. 403-492. doi : 10.4007/annals.2017.185.2.2. http://geodesic.mathdoc.fr/articles/10.4007/annals.2017.185.2.2/

Cité par Sources :