Progression-free sets in $\mathbb Z_4^n$ are exponentially small
Annals of mathematics, Tome 185 (2017) no. 1, pp. 331-337.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We show that for an integer $n\ge 1$, any subset $A\subseteq \mathbb{Z}_4^n$ free of three-term arithmetic progressions has size $|A|\le 4^{\gamma n}$, with an absolute constant $\gamma\approx 0.926$.
DOI : 10.4007/annals.2017.185.1.7

Ernie Croot 1 ; Vsevolod F. Lev 2 ; Péter Pál Pach 3

1 Georgia Institute of Technology, Atlanta, GA
2 The University of Haifa at Oranim, Tivon, Israel
3 Budapest University of Technology and Economics, Budapest, Hungary
@article{10_4007_annals_2017_185_1_7,
     author = {Ernie Croot and Vsevolod F. Lev and P\'eter P\'al Pach},
     title = {Progression-free sets in $\mathbb Z_4^n$ are exponentially small},
     journal = {Annals of mathematics},
     pages = {331--337},
     publisher = {mathdoc},
     volume = {185},
     number = {1},
     year = {2017},
     doi = {10.4007/annals.2017.185.1.7},
     mrnumber = {3583357},
     zbl = {06686589},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2017.185.1.7/}
}
TY  - JOUR
AU  - Ernie Croot
AU  - Vsevolod F. Lev
AU  - Péter Pál Pach
TI  - Progression-free sets in $\mathbb Z_4^n$ are exponentially small
JO  - Annals of mathematics
PY  - 2017
SP  - 331
EP  - 337
VL  - 185
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2017.185.1.7/
DO  - 10.4007/annals.2017.185.1.7
LA  - en
ID  - 10_4007_annals_2017_185_1_7
ER  - 
%0 Journal Article
%A Ernie Croot
%A Vsevolod F. Lev
%A Péter Pál Pach
%T Progression-free sets in $\mathbb Z_4^n$ are exponentially small
%J Annals of mathematics
%D 2017
%P 331-337
%V 185
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2017.185.1.7/
%R 10.4007/annals.2017.185.1.7
%G en
%F 10_4007_annals_2017_185_1_7
Ernie Croot; Vsevolod F. Lev; Péter Pál Pach. Progression-free sets in $\mathbb Z_4^n$ are exponentially small. Annals of mathematics, Tome 185 (2017) no. 1, pp. 331-337. doi : 10.4007/annals.2017.185.1.7. http://geodesic.mathdoc.fr/articles/10.4007/annals.2017.185.1.7/

Cité par Sources :