New G$_2$-holonomy cones and exotic nearly Kähler structures on $S^6$ and $S^3 \times S^3$
Annals of mathematics, Tome 185 (2017) no. 1, pp. 59-130.

Voir la notice de l'article provenant de la source Annals of Mathematics website

There is a rich theory of so-called (strict) nearly Kähler manifolds, almost-Hermitian manifolds generalising the famous almost complex structure on the $6$-sphere induced by octonionic multiplication. Nearly Kähler $6$-manifolds play a distinguished role both in the general structure theory and also because of their connection with singular spaces with holonomy group the compact exceptional Lie group $\mathrm{G}_2$: the metric cone over a Riemannian $6$-manifold $M$ has holonomy contained in $\mathrm{G}_2$ if and only if $M$ is a nearly Kähler $6$-manifold.
A central problem in the field has been the absence of any complete inhomogeneous examples. We prove the existence of the first complete inhomogeneous nearly Kähler $6$-manifolds by proving the existence of at least one cohomogeneity one nearly Kähler structure on the $6$-sphere and on the product of a pair of $3$-spheres. We conjecture that these are the only simply connected (inhomogeneous) cohomogeneity one nearly Kähler structures in six dimensions.
DOI : 10.4007/annals.2017.185.1.2

Lorenzo Foscolo 1 ; Mark Haskins 2

1 Stony Brook University, Stony Brook, NY
2 Imperial College London, South Kensington Campus, London, UK
@article{10_4007_annals_2017_185_1_2,
     author = {Lorenzo Foscolo and Mark Haskins},
     title = {New {G}$_2$-holonomy cones and exotic nearly {K\"ahler} structures on $S^6$ and $S^3 \times S^3$},
     journal = {Annals of mathematics},
     pages = {59--130},
     publisher = {mathdoc},
     volume = {185},
     number = {1},
     year = {2017},
     doi = {10.4007/annals.2017.185.1.2},
     mrnumber = {3583352},
     zbl = {06686584},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2017.185.1.2/}
}
TY  - JOUR
AU  - Lorenzo Foscolo
AU  - Mark Haskins
TI  - New G$_2$-holonomy cones and exotic nearly Kähler structures on $S^6$ and $S^3 \times S^3$
JO  - Annals of mathematics
PY  - 2017
SP  - 59
EP  - 130
VL  - 185
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2017.185.1.2/
DO  - 10.4007/annals.2017.185.1.2
LA  - en
ID  - 10_4007_annals_2017_185_1_2
ER  - 
%0 Journal Article
%A Lorenzo Foscolo
%A Mark Haskins
%T New G$_2$-holonomy cones and exotic nearly Kähler structures on $S^6$ and $S^3 \times S^3$
%J Annals of mathematics
%D 2017
%P 59-130
%V 185
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2017.185.1.2/
%R 10.4007/annals.2017.185.1.2
%G en
%F 10_4007_annals_2017_185_1_2
Lorenzo Foscolo; Mark Haskins. New G$_2$-holonomy cones and exotic nearly Kähler structures on $S^6$ and $S^3 \times S^3$. Annals of mathematics, Tome 185 (2017) no. 1, pp. 59-130. doi : 10.4007/annals.2017.185.1.2. http://geodesic.mathdoc.fr/articles/10.4007/annals.2017.185.1.2/

Cité par Sources :