Cyclic surfaces and Hitchin components in rank 2
Annals of mathematics, Tome 185 (2017) no. 1, pp. 1-58.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We prove that given a Hitchin representation in a split real rank 2 group $\mathsf{G}_0$, there exists a unique equivariant minimal surface in the corresponding symmetric space. As a corollary, we obtain a parametrisation of the Hitchin component by a Hermitian bundle over Teichmüller space. The proof goes through introducing holomorphic curves in a suitable bundle over the symmetric space of $\mathsf{G}_0$. Some partial extensions of the construction hold for cyclic bundles in higher rank.
DOI : 10.4007/annals.2017.185.1.1

François Labourie 1

1 Université Nice Sophia Antipolis, Laboratoire J.-A. Dieudonné, Nice, France
@article{10_4007_annals_2017_185_1_1,
     author = {Fran\c{c}ois Labourie},
     title = {Cyclic surfaces and {Hitchin} components in rank 2},
     journal = {Annals of mathematics},
     pages = {1--58},
     publisher = {mathdoc},
     volume = {185},
     number = {1},
     year = {2017},
     doi = {10.4007/annals.2017.185.1.1},
     mrnumber = {3583351},
     zbl = {06686583},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2017.185.1.1/}
}
TY  - JOUR
AU  - François Labourie
TI  - Cyclic surfaces and Hitchin components in rank 2
JO  - Annals of mathematics
PY  - 2017
SP  - 1
EP  - 58
VL  - 185
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2017.185.1.1/
DO  - 10.4007/annals.2017.185.1.1
LA  - en
ID  - 10_4007_annals_2017_185_1_1
ER  - 
%0 Journal Article
%A François Labourie
%T Cyclic surfaces and Hitchin components in rank 2
%J Annals of mathematics
%D 2017
%P 1-58
%V 185
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2017.185.1.1/
%R 10.4007/annals.2017.185.1.1
%G en
%F 10_4007_annals_2017_185_1_1
François Labourie. Cyclic surfaces and Hitchin components in rank 2. Annals of mathematics, Tome 185 (2017) no. 1, pp. 1-58. doi : 10.4007/annals.2017.185.1.1. http://geodesic.mathdoc.fr/articles/10.4007/annals.2017.185.1.1/

Cité par Sources :