Discrete Riesz transforms and sharp metric $X_p$ inequalities
Annals of mathematics, Tome 184 (2016) no. 3, pp. 991-1016.

Voir la notice de l'article provenant de la source Annals of Mathematics website

For $p\in [2,\infty)$, the metric $X_p$ inequality with sharp scaling parameter is proven here to hold true in $L_p$. The geometric consequences of this result include the following sharp statements about embeddings of $L_q$ into $L_p$ when $2\lt q\lt p\lt \infty$: the maximal $\theta\in (0,1]$ for which $L_q$ admits a bi-$\theta$-Hölder embedding into $L_p$ equals $q/p$, and for $m,n\in \mathbb{N}$, the smallest possible bi-Lipschitz distortion of any embedding into $L_p$ of the grid $\{1,\ldots,m\}^n\subset \ell_q^n$ is bounded above and below by constant multiples (depending only on $p,q$) of the quantity $\min\{n^{(p-q)(q-2)/(q^2(p-2))}, m^{(q-2)/q}\}$.
DOI : 10.4007/annals.2016.184.3.9

Assaf Naor 1

1 Princeton University, Princeton, NJ
@article{10_4007_annals_2016_184_3_9,
     author = {Assaf Naor},
     title = {Discrete {Riesz} transforms and sharp metric $X_p$ inequalities},
     journal = {Annals of mathematics},
     pages = {991--1016},
     publisher = {mathdoc},
     volume = {184},
     number = {3},
     year = {2016},
     doi = {10.4007/annals.2016.184.3.9},
     mrnumber = {3549628},
     zbl = {06647937},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2016.184.3.9/}
}
TY  - JOUR
AU  - Assaf Naor
TI  - Discrete Riesz transforms and sharp metric $X_p$ inequalities
JO  - Annals of mathematics
PY  - 2016
SP  - 991
EP  - 1016
VL  - 184
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2016.184.3.9/
DO  - 10.4007/annals.2016.184.3.9
LA  - en
ID  - 10_4007_annals_2016_184_3_9
ER  - 
%0 Journal Article
%A Assaf Naor
%T Discrete Riesz transforms and sharp metric $X_p$ inequalities
%J Annals of mathematics
%D 2016
%P 991-1016
%V 184
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2016.184.3.9/
%R 10.4007/annals.2016.184.3.9
%G en
%F 10_4007_annals_2016_184_3_9
Assaf Naor. Discrete Riesz transforms and sharp metric $X_p$ inequalities. Annals of mathematics, Tome 184 (2016) no. 3, pp. 991-1016. doi : 10.4007/annals.2016.184.3.9. http://geodesic.mathdoc.fr/articles/10.4007/annals.2016.184.3.9/

Cité par Sources :