Geometric invariants for real quadratic fields
Annals of mathematics, Tome 184 (2016) no. 3, pp. 949-990.

Voir la notice de l'article provenant de la source Annals of Mathematics website

To an ideal class of a real quadratic field we associate a certain surface. This surface, which is a new geometric invariant, has the usual modular closed geodesic as its boundary. Furthermore, its area is determined by the length of an associated backward continued fraction. We study the distribution properties of this surface on average over a genus. In the process we give an extension and refinement of the Katok-Sarnak formula.
DOI : 10.4007/annals.2016.184.3.8

W. Duke 1 ; Ö. Imamoḡlu 2 ; Á. Tóth 3

1 University of California, Los Angeles, CA
2 Institute of Mathematics, ETH, Zürich, Switzerland
3 Eötvös Loránd University, Budapest, Hungary
@article{10_4007_annals_2016_184_3_8,
     author = {W. Duke and \"O. Imamoḡlu and \'A. T\'oth},
     title = {Geometric invariants for real quadratic fields},
     journal = {Annals of mathematics},
     pages = {949--990},
     publisher = {mathdoc},
     volume = {184},
     number = {3},
     year = {2016},
     doi = {10.4007/annals.2016.184.3.8},
     mrnumber = {3549627},
     zbl = {06647936},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2016.184.3.8/}
}
TY  - JOUR
AU  - W. Duke
AU  - Ö. Imamoḡlu
AU  - Á. Tóth
TI  - Geometric invariants for real quadratic fields
JO  - Annals of mathematics
PY  - 2016
SP  - 949
EP  - 990
VL  - 184
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2016.184.3.8/
DO  - 10.4007/annals.2016.184.3.8
LA  - en
ID  - 10_4007_annals_2016_184_3_8
ER  - 
%0 Journal Article
%A W. Duke
%A Ö. Imamoḡlu
%A Á. Tóth
%T Geometric invariants for real quadratic fields
%J Annals of mathematics
%D 2016
%P 949-990
%V 184
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2016.184.3.8/
%R 10.4007/annals.2016.184.3.8
%G en
%F 10_4007_annals_2016_184_3_8
W. Duke; Ö. Imamoḡlu; Á. Tóth. Geometric invariants for real quadratic fields. Annals of mathematics, Tome 184 (2016) no. 3, pp. 949-990. doi : 10.4007/annals.2016.184.3.8. http://geodesic.mathdoc.fr/articles/10.4007/annals.2016.184.3.8/

Cité par Sources :