$p$-torsion monodromy representations of elliptic curves over geometric function fields
Annals of mathematics, Tome 184 (2016) no. 3, pp. 709-744.

Voir la notice de l'article provenant de la source Annals of Mathematics website

Given a complex quasiprojective curve $B$ and a nonisotrivial family $\mathcal{E}$ of elliptic curves over $B$, the $p$-torsion $\mathcal{E}[p]$ yields a monodromy representation $\rho_\mathcal{E}[p]:\pi_1(B)\rightarrow \mathrm{GL}_2(\mathbb{F}_p)$. We prove that if $\rho_{\mathcal E}[p]\cong \rho_{\mathcal E’}[p]$, then $\mathcal{E}$ and $\mathcal E’$ are isogenous, provided $p$ is larger than a constant depending only on the gonality of $B$. This can be viewed as a function field analog of the Frey–Mazur conjecture, which states that an elliptic curve over $\mathbb{Q}$ is determined up to isogeny by its $p$-torsion Galois representation for $p> 17$. The proof relies on hyperbolic geometry and is therefore only applicable in characteristic 0.
DOI : 10.4007/annals.2016.184.3.2

Benjamin Bakker 1 ; Jacob Tsimerman 2

1 Humboldt-Universität zu Berlin
2 University of Toronto, Toronto, Ontario, Canada
@article{10_4007_annals_2016_184_3_2,
     author = {Benjamin Bakker and Jacob Tsimerman},
     title = {$p$-torsion monodromy representations of elliptic curves over geometric function fields},
     journal = {Annals of mathematics},
     pages = {709--744},
     publisher = {mathdoc},
     volume = {184},
     number = {3},
     year = {2016},
     doi = {10.4007/annals.2016.184.3.2},
     mrnumber = {3549621},
     zbl = {06647930},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2016.184.3.2/}
}
TY  - JOUR
AU  - Benjamin Bakker
AU  - Jacob Tsimerman
TI  - $p$-torsion monodromy representations of elliptic curves over geometric function fields
JO  - Annals of mathematics
PY  - 2016
SP  - 709
EP  - 744
VL  - 184
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2016.184.3.2/
DO  - 10.4007/annals.2016.184.3.2
LA  - en
ID  - 10_4007_annals_2016_184_3_2
ER  - 
%0 Journal Article
%A Benjamin Bakker
%A Jacob Tsimerman
%T $p$-torsion monodromy representations of elliptic curves over geometric function fields
%J Annals of mathematics
%D 2016
%P 709-744
%V 184
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2016.184.3.2/
%R 10.4007/annals.2016.184.3.2
%G en
%F 10_4007_annals_2016_184_3_2
Benjamin Bakker; Jacob Tsimerman. $p$-torsion monodromy representations of elliptic curves over geometric function fields. Annals of mathematics, Tome 184 (2016) no. 3, pp. 709-744. doi : 10.4007/annals.2016.184.3.2. http://geodesic.mathdoc.fr/articles/10.4007/annals.2016.184.3.2/

Cité par Sources :