On the structure of ${\mathscr A}$-free measures and applications
Annals of mathematics, Tome 184 (2016) no. 3, pp. 1017-1039.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We establish a general structure theorem for the singular part of ${\mathscr A}$-free Radon measures, where ${\mathscr A}$ is a linear PDE operator. By applying the theorem to suitably chosen differential operators ${\mathscr A}$, we obtain a simple proof of Alberti’s rank-one theorem and, for the first time, its extensions to functions of bounded deformation (BD). We also prove a structure theorem for the singular part of a finite family of normal currents. The latter result implies that the Rademacher theorem on the differentiability of Lipschitz functions can hold only for absolutely continuous measures and that every top-dimensional Ambrosio–Kirchheim metric current in $\mathbb R^d$ is a Federer–Fleming flat chain.
DOI : 10.4007/annals.2016.184.3.10

Guido De Philippis 1 ; Filip Rindler 2

1 Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy
2 Mathematics Institute, University of Warwick, Coventry, United Kingdom
@article{10_4007_annals_2016_184_3_10,
     author = {Guido De Philippis and Filip Rindler},
     title = {On the structure of ${\mathscr A}$-free measures and applications},
     journal = {Annals of mathematics},
     pages = {1017--1039},
     publisher = {mathdoc},
     volume = {184},
     number = {3},
     year = {2016},
     doi = {10.4007/annals.2016.184.3.10},
     mrnumber = {3549629},
     zbl = {06647938},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2016.184.3.10/}
}
TY  - JOUR
AU  - Guido De Philippis
AU  - Filip Rindler
TI  - On the structure of ${\mathscr A}$-free measures and applications
JO  - Annals of mathematics
PY  - 2016
SP  - 1017
EP  - 1039
VL  - 184
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2016.184.3.10/
DO  - 10.4007/annals.2016.184.3.10
LA  - en
ID  - 10_4007_annals_2016_184_3_10
ER  - 
%0 Journal Article
%A Guido De Philippis
%A Filip Rindler
%T On the structure of ${\mathscr A}$-free measures and applications
%J Annals of mathematics
%D 2016
%P 1017-1039
%V 184
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2016.184.3.10/
%R 10.4007/annals.2016.184.3.10
%G en
%F 10_4007_annals_2016_184_3_10
Guido De Philippis; Filip Rindler. On the structure of ${\mathscr A}$-free measures and applications. Annals of mathematics, Tome 184 (2016) no. 3, pp. 1017-1039. doi : 10.4007/annals.2016.184.3.10. http://geodesic.mathdoc.fr/articles/10.4007/annals.2016.184.3.10/

Cité par Sources :