Rigid inner forms of real and $p$-adic groups
Annals of mathematics, Tome 184 (2016) no. 2, pp. 559-632.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We define a new cohomology set $H^1(u \to W,Z \to G)$ for an affine algebraic group $G$ and a finite central subgroup $Z$, both defined over a local field of characteristic zero, which is an enlargement of the usual first Galois cohomology set of $G$. We show how this set can be used to give a precise conjectural description of the internal structure and endoscopic transfer of tempered $L$-packets for arbitrary connected reductive groups that extends the well-known conjectural description for quasi-split groups. In the case of real groups, we show that this description is correct using Shelstad’s work.
DOI : 10.4007/annals.2016.184.2.6

Tasho Kaletha 1

1 Princeton University, Princeton, NJ
@article{10_4007_annals_2016_184_2_6,
     author = {Tasho Kaletha},
     title = {Rigid inner forms of real and $p$-adic groups},
     journal = {Annals of mathematics},
     pages = {559--632},
     publisher = {mathdoc},
     volume = {184},
     number = {2},
     year = {2016},
     doi = {10.4007/annals.2016.184.2.6},
     mrnumber = {3548533},
     zbl = {06662220},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2016.184.2.6/}
}
TY  - JOUR
AU  - Tasho Kaletha
TI  - Rigid inner forms of real and $p$-adic groups
JO  - Annals of mathematics
PY  - 2016
SP  - 559
EP  - 632
VL  - 184
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2016.184.2.6/
DO  - 10.4007/annals.2016.184.2.6
LA  - en
ID  - 10_4007_annals_2016_184_2_6
ER  - 
%0 Journal Article
%A Tasho Kaletha
%T Rigid inner forms of real and $p$-adic groups
%J Annals of mathematics
%D 2016
%P 559-632
%V 184
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2016.184.2.6/
%R 10.4007/annals.2016.184.2.6
%G en
%F 10_4007_annals_2016_184_2_6
Tasho Kaletha. Rigid inner forms of real and $p$-adic groups. Annals of mathematics, Tome 184 (2016) no. 2, pp. 559-632. doi : 10.4007/annals.2016.184.2.6. http://geodesic.mathdoc.fr/articles/10.4007/annals.2016.184.2.6/

Cité par Sources :