An integrable deformation of an ellipse of small eccentricity is an ellipse
Annals of mathematics, Tome 184 (2016) no. 2, pp. 527-558.

Voir la notice de l'article provenant de la source Annals of Mathematics website

The classical Birkhoff conjecture claims that the boundary of a strictly convex integrable billiard table is necessarily an ellipse (or a circle as a special case). In this article we show that a version of this conjecture is true for tables bounded by small perturbations of ellipses of small eccentricity.
DOI : 10.4007/annals.2016.184.2.5

Artur Avila 1 ; Jacopo De Simoi 2 ; Vadim Kaloshin 3

1 CNRS, IMJ-PRG, UMR 7586, Université Paris Diderot, Sorbonne Paris Cité, Sorbonnes Universités, UPMC Univ Paris 06, Paris, France and IMPA, Rio de Janeiro, Brasil
2 University of Toronto, Toronto, ON, Canada
3 University of Maryland, College Park, MD
@article{10_4007_annals_2016_184_2_5,
     author = {Artur Avila and Jacopo De Simoi and Vadim Kaloshin},
     title = {An integrable deformation of an ellipse of small eccentricity is an ellipse},
     journal = {Annals of mathematics},
     pages = {527--558},
     publisher = {mathdoc},
     volume = {184},
     number = {2},
     year = {2016},
     doi = {10.4007/annals.2016.184.2.5},
     mrnumber = {3548532},
     zbl = {06662219},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2016.184.2.5/}
}
TY  - JOUR
AU  - Artur Avila
AU  - Jacopo De Simoi
AU  - Vadim Kaloshin
TI  - An integrable deformation of an ellipse of small eccentricity is an ellipse
JO  - Annals of mathematics
PY  - 2016
SP  - 527
EP  - 558
VL  - 184
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2016.184.2.5/
DO  - 10.4007/annals.2016.184.2.5
LA  - en
ID  - 10_4007_annals_2016_184_2_5
ER  - 
%0 Journal Article
%A Artur Avila
%A Jacopo De Simoi
%A Vadim Kaloshin
%T An integrable deformation of an ellipse of small eccentricity is an ellipse
%J Annals of mathematics
%D 2016
%P 527-558
%V 184
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2016.184.2.5/
%R 10.4007/annals.2016.184.2.5
%G en
%F 10_4007_annals_2016_184_2_5
Artur Avila; Jacopo De Simoi; Vadim Kaloshin. An integrable deformation of an ellipse of small eccentricity is an ellipse. Annals of mathematics, Tome 184 (2016) no. 2, pp. 527-558. doi : 10.4007/annals.2016.184.2.5. http://geodesic.mathdoc.fr/articles/10.4007/annals.2016.184.2.5/

Cité par Sources :