Imaginary geometry III: reversibility of $\mathrm{SLE}_\kappa$ for $\kappa \in (4,8)$
Annals of mathematics, Tome 184 (2016) no. 2, pp. 455-486.

Voir la notice de l'article provenant de la source Annals of Mathematics website

Suppose that $D \subseteq \mathbf{C}$ is a Jordan domain and $x,y \in \partial D$ are distinct. Fix $\kappa \in (4,8)$, and let $\eta$ be an $\mathrm{SLE}_\kappa$ process from $x$ to $y$ in $D$. We prove that the law of the time-reversal of $\eta$ is, up to reparametrization, an $\mathrm{SLE}_\kappa$ process from $y$ to $x$ in $D$. More generally, we prove that $\mathrm{SLE}_\kappa(\rho_1;\rho_2)$ processes are reversible if and only if both $\rho_i$ are at least $\kappa/2-4$, which is the critical threshold at or below which such curves are boundary filling.
Our result supplies the missing ingredient needed to show that for all $\kappa \in (4,8)$, the so-called conformal loop ensembles $\mathrm{CLE}_\kappa$ are canonically defined, with almost surely continuous loops. It also provides an interesting way to couple two Gaussian free fields (with different boundary conditions) so that their difference is piecewise constant and the boundaries between the constant regions are $\mathrm{SLE}_\kappa$ curves.
DOI : 10.4007/annals.2016.184.2.3

Jason Miller 1 ; Scott Sheffield 2

1 University of Cambridge, Cambridge, United Kingdom
2 Massachusetts Institute of Technology, Cambridge, MA
@article{10_4007_annals_2016_184_2_3,
     author = {Jason Miller and Scott Sheffield},
     title = {Imaginary geometry {III:} reversibility of $\mathrm{SLE}_\kappa$ for $\kappa \in (4,8)$},
     journal = {Annals of mathematics},
     pages = {455--486},
     publisher = {mathdoc},
     volume = {184},
     number = {2},
     year = {2016},
     doi = {10.4007/annals.2016.184.2.3},
     mrnumber = {3548530},
     zbl = {06662217},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2016.184.2.3/}
}
TY  - JOUR
AU  - Jason Miller
AU  - Scott Sheffield
TI  - Imaginary geometry III: reversibility of $\mathrm{SLE}_\kappa$ for $\kappa \in (4,8)$
JO  - Annals of mathematics
PY  - 2016
SP  - 455
EP  - 486
VL  - 184
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2016.184.2.3/
DO  - 10.4007/annals.2016.184.2.3
LA  - en
ID  - 10_4007_annals_2016_184_2_3
ER  - 
%0 Journal Article
%A Jason Miller
%A Scott Sheffield
%T Imaginary geometry III: reversibility of $\mathrm{SLE}_\kappa$ for $\kappa \in (4,8)$
%J Annals of mathematics
%D 2016
%P 455-486
%V 184
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2016.184.2.3/
%R 10.4007/annals.2016.184.2.3
%G en
%F 10_4007_annals_2016_184_2_3
Jason Miller; Scott Sheffield. Imaginary geometry III: reversibility of $\mathrm{SLE}_\kappa$ for $\kappa \in (4,8)$. Annals of mathematics, Tome 184 (2016) no. 2, pp. 455-486. doi : 10.4007/annals.2016.184.2.3. http://geodesic.mathdoc.fr/articles/10.4007/annals.2016.184.2.3/

Cité par Sources :