Extremal results for random discrete structures
Annals of mathematics, Tome 184 (2016) no. 2, pp. 333-365.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We study thresholds for extremal properties of random discrete structures. We determine the threshold for Szemerédi’s theorem on arithmetic progressions in random subsets of the integers and its multidimensional extensions, and we determine the threshold for Turán-type problems for random graphs and hypergraphs. In particular, we verify a conjecture of Kohayakawa, Łuczak, and Rödl for Turán-type problems in random graphs. Similar results were obtained independently by Conlon and Gowers.
DOI : 10.4007/annals.2016.184.2.1

Mathias Schacht 1

1 Fachbereich Mathematik, Universität Hamburg, Hamburg, Germany
@article{10_4007_annals_2016_184_2_1,
     author = {Mathias Schacht},
     title = {Extremal results for random discrete structures},
     journal = {Annals of mathematics},
     pages = {333--365},
     publisher = {mathdoc},
     volume = {184},
     number = {2},
     year = {2016},
     doi = {10.4007/annals.2016.184.2.1},
     mrnumber = {3548528},
     zbl = {1351.05207},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2016.184.2.1/}
}
TY  - JOUR
AU  - Mathias Schacht
TI  - Extremal results for random discrete structures
JO  - Annals of mathematics
PY  - 2016
SP  - 333
EP  - 365
VL  - 184
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2016.184.2.1/
DO  - 10.4007/annals.2016.184.2.1
LA  - en
ID  - 10_4007_annals_2016_184_2_1
ER  - 
%0 Journal Article
%A Mathias Schacht
%T Extremal results for random discrete structures
%J Annals of mathematics
%D 2016
%P 333-365
%V 184
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2016.184.2.1/
%R 10.4007/annals.2016.184.2.1
%G en
%F 10_4007_annals_2016_184_2_1
Mathias Schacht. Extremal results for random discrete structures. Annals of mathematics, Tome 184 (2016) no. 2, pp. 333-365. doi : 10.4007/annals.2016.184.2.1. http://geodesic.mathdoc.fr/articles/10.4007/annals.2016.184.2.1/

Cité par Sources :