On the number of generators of ideals in polynomial rings
Annals of mathematics, Tome 184 (2016) no. 1, pp. 315-331.

Voir la notice de l'article provenant de la source Annals of Mathematics website

For an ideal $I$ in a noetherian ring $R$, let $\mu(I)$ be the minimal number of generators of $I$. It is well known that there is a sequence of inequalities $\mu(I/I^2)\leq \mu(I)\leq \mu(I/I^2)+1$ that are strict in general. However, Murthy conjectured in 1975 that $\mu(I/I^2)=\mu(I)$ for ideals in polynomial rings whose height equals $\mu(I/I^2)$. The purpose of this article is to prove a stronger form of the conjecture in case the base field is infinite of characteristic different from $2$: Namely, the equality $\mu(I/I^2)=\mu(I)$ holds for any ideal $I$, irrespective of its height.
DOI : 10.4007/annals.2016.184.1.3

Jean Fasel 1

1 Institut Fourier, Université Grenoble Alpes, Grenoble, France
@article{10_4007_annals_2016_184_1_3,
     author = {Jean Fasel},
     title = {On the number of generators of ideals in polynomial rings},
     journal = {Annals of mathematics},
     pages = {315--331},
     publisher = {mathdoc},
     volume = {184},
     number = {1},
     year = {2016},
     doi = {10.4007/annals.2016.184.1.3},
     mrnumber = {3505181},
     zbl = {06605833},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2016.184.1.3/}
}
TY  - JOUR
AU  - Jean Fasel
TI  - On the number of generators of ideals in polynomial rings
JO  - Annals of mathematics
PY  - 2016
SP  - 315
EP  - 331
VL  - 184
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2016.184.1.3/
DO  - 10.4007/annals.2016.184.1.3
LA  - en
ID  - 10_4007_annals_2016_184_1_3
ER  - 
%0 Journal Article
%A Jean Fasel
%T On the number of generators of ideals in polynomial rings
%J Annals of mathematics
%D 2016
%P 315-331
%V 184
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2016.184.1.3/
%R 10.4007/annals.2016.184.1.3
%G en
%F 10_4007_annals_2016_184_1_3
Jean Fasel. On the number of generators of ideals in polynomial rings. Annals of mathematics, Tome 184 (2016) no. 1, pp. 315-331. doi : 10.4007/annals.2016.184.1.3. http://geodesic.mathdoc.fr/articles/10.4007/annals.2016.184.1.3/

Cité par Sources :